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Abstract of the Dissertation

A Self-Switching Markov Approach to the Analysis of the 

Business Cycle 

by FRED ENGST 

Dissertation Director:

Professor Hiroki Tsurumi

This dissertation explores a new class of time series models that is more 

compatible with endogenous business cycle theories than the existing models 

in contemporary economic literature. It is more compatible in the sense that it 

can capture more readily the endogenous component of business cycle fluc­

tuations, and it can model the business cycle as a limit cycle. This goal is 

achieved by nesting both the threshold autoregressive (TAR) model and the 

Markov-switching (MS) model into a class of self-switching Markov (SSM) 

models.

The motivations for pursuing an endogenous business cycle modeling 

strategy are reviewed first. In this section, I evaluate a variety of factors that 

provide nonlinear feedback to an economy, including the dual roles of compe­

tition, innovation, the impact of changing the optimal scale of production, the

i i
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role of money, asymmetry of information, and mans- other factors that can a f ­

fect the dynamics of an economy. Next I review the evidence of time series 

nonlinearity, and models of endogenous business cycles.

After the formulation of a SSM model, I compare it to a number of 

benchmark time series models, including James Hamilton’s (1989) fixed t r a n ­

sition probability (FTP) MS model, Andrew Filardo’s (1994) time-varying t r a n ­

sition probability (TVTP) MS model, as well as Howell Tong’s (1990) TAR models.

In contrast to MS models that assume regimes are exogenously deter - 

mined, I find the endogenous information to be significant in predicting the 

switch in regime. Compared to TAR models that rely on discrete thresholds and 

delay factors, the SSM approach also improves likelihoods significantly.

When the SSM model is applied to the monthly changes in the U.S. un - 

employment rate, I identify many estimates that exhibit stable and persistent 

limit cycles of diverse periodicity, up to 20 months, in forecasts or simulations.

Finally, I observe that the endogenous switching parameters to be s ta ­

tistically significant in all models. This finding lends empirical support to e n ­

dogenous business cycle theories. The challenge remains, however, to model 

the business cycle as a  low frequency (five to ten years) limit cycle.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Acknowledgments and Dedication

I thank my committee members: Hiroki Tsurumi, Willi Semmler, Bruce 

Mizrach, Bartholomew Moore, and  Peter Ireland; for their patience and 

encouragement, as well as invaluable inputs. I am grateful to Dorothy Rinaldi, 

the graduate secretary in the economic department, and all staffs in the 

departm ent. They created an environm ent that made my graduate study 

possible.

Thanks also go to Richard Smith. Without his help in editing an earlier 

draft, this dissertation would have been less comprehensible.

I am thankful for the support and  encouragement from my friends and 

family. I am especially indebted to my parents Joan Hinton and Sid Engst who 

sparked my interest in economics while I was growing up in China, and who 

supported me in time of difficultly.

I dedicate this dissertaton to my daughters Katie and Gina, with love.

i v

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Table of contents

A bstract of the  D isse rta tio n  i i

A cknow ledgm ents a n d  D ed ication  i v

List of Tables................................................................................................. v i i i

List o f Illu s tra tio n s ....................................................................................... ix

1. In tro d u c tio n ................................................................................................... 1

2. Business Cycle D ynam ics.........................................................................8

2.1. Introduction...............................................................................................8

2.2. Dynamics via Nonlinear Feedback........................................................ 8

2.2.1. Dual Roles of Competition............................................................... 9

2.2.2. Over-production............................................................................. 12

2.2.3. Variable Returns to Scale............................................................. 13

2.2.4. Factor substitutability................................................................... 13

2.2.5. Risk versus Uncertainty.............................................................. 14

2.2.6. Investment Multiplier and Bubble.............................................16

2.2.7. Destabilizing Money Holding...................................................... 17

2.2.8. Capital Depreciation and Utilization..........................................18

2.2.9. Asymmetry of Information......................................................... 19

2.3. Evidence of Nonlinearity......................................................................21

2.4. Models of Internal Dynamics...............................................................24

2.5. Conclusion.................................................................................................29

v

L

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

3. In te rn a l Dynam ics via Self-Switching Markov M odels 30

3.1. In troduction............................................................................................ 30

3.2. Limit Cycles in Time Series...................................................................31

3.3. Limit Cycles via Threshold Models..................................................... 32

3.4. Threshold versus Markov-Switching................................................ 36

3.5. A Self-Switching Markov (SSM) Model............................................. 37

3.5.1. The Preliminaries.......................................................................... 37

3.5.2. The Regimes and Their Transitions.......................................... 39

3.5.3. The Initial States............................................................................42

3.5.4. The Gradient...................................................................................43

3.5.5. The Estimation................................................................................ 45

a) Finding a Starting Parameter Vector....................................... 45

b) Finding Multiple Local Maxima................................................ 46

i) Grid-Search for Starting Vectors........................................ 47

ii) Random Generation of Starting Vectors........................... 49

c) Param eter Transform ation........................................................ 50

3.5.6. The Evaluation................................................................................ 50

a) Post-Sample Prediction Error.................................................... 50

i) Long Horizon Forecast........................................................... 51

ii) Simulated Real Time Forecast.............................................. 52

b) Bootstrap Likelihood....................................................................53

3.5.7. Nesting a TAR or an MS Model in an SSM Model................... 54

a) Nesting a TAR Model in an SSM Model..................................... 54

b) Nesting an MS Model in an SSM Model.................................... 55

3.5.8. Time-Varying Transition versus Self-Switching................... 56

3.6. Conclusion................................................................................................58

v i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

4. SSM Models of the  U.S. Business Cycle............................................59

4.1. Introduction............................................................................................. 59

4.2. SSM Models of the GDP Series...............................................................59

4.3. SSM Models of the IP Series.................................................................. 67

4.4. An SSM Model o f the Unemployment Rate........................................ 72

4.5. Conclusion................................................................................................. 80

5. Appendix: SSM M odels on Benchm ark Time Series.................... 82

5.1. The Canadian Lynx Yearly Trapping Series......................................82

5.2. The Sunspot Num bers............................................................................ 85

6. R e fe ren c e s .................................................................................................... 89

V ita ......................................................................................................................... 94

v i  i

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

List of Tables

Table 1 Characteristics of the sunspots model.......................................................... 34

Table 2 Characteristics of the Lynx m odel.................................................................34

Table 3 Characteristics of the GNP m odel.................................................................. 35

Table 4 Binary-state to K-state correspondence.......................................................38

Table 5 32-State FTP versus SSM models of GDP....................................................... 61

Table 6 8-State asymmetric AR GDP models.............................................................66

Table 7 Symmetric AR FTP model exploration........................................................ 67

Table 8 TVTP versus SSM models of IP......................................................................70

Table 9 2-state models of the changes in the U.S. unemployment rate...............76

Table 10 AR coefficients for the models in Table 9.................................................. 77

Table 11 Estimation Characteristics............................................................................. 77

Table 12 Models of the Lynx series..............................................................................84

Table 13 Models of the Sunspot N um bers..................................................................87

v i i i

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

List o f Illustrations

Figure 1 Grid search of local maxima........................................................................49

Figure 2 Full-sample recession probabilities of the 32-state GDP models (1) ..62

Figure 3 Full-sample recession probabilities of the 32-state GDP models (2) ..63

Figure 4 Full-sample recession probabilities of the 32-state GDP models (3)..63

Figure 5 Full-sample recession probabilities of the 8-state GDP models.......... 67

Figure 6 Full-sample recession probabilities of the IP models............................71

Figure 7 The U.S. unemployment rate and the monthly changes......................72

Figure 8 Full-sample recession probabilities of the FTP1 and SSM1 models. ...78

Figure 9 Forecasting based on the SSM1 and FTP1 models................................... 78

Figure 10 Limit cycle trajectory (phase diagram) of the SSM1 forecast 79

Figure 11 Full-sample recession probabilities of the SSM2 and FTP2 models. ..79

i x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

I

1. Introduction

A vast body of economic literature has been devoted to the study of business 

cycles, and yet the profession’s understanding of the cause for cycles is still 

limited. Some of the most basic questions are not well understood. For example, 

“Is there a systematic tendency for cycles?”. In other words, is there a 

“natural” rhythm  in a market economy? If there is, is the cycle or rhythm 

generated mainly from exogenous or endogenous sources? These questions are 

fundamental to a better understanding of the nature of the business cycle.

To address these questions, economists have built numerous models of 

the economy. Imbedded within these business cycle models, however, implicit 

or otherwise, a re  the philosophical world views of the model builders. The 

viewr that a market economy is best characterized by balance and equanimity 

despite fierce competition is implicit in reactive models that passively respond 

to outside influence. This dom inant world view in the economic literature sees 

the economy as an orderly, balanced system; a system that is always in a state 

of market-clearing equilibrium. In the dynamic version of this world view, 

not only do all markets clear at every moment of time, the economy is also as­

sumed to be on a path towards a steady-state equilibrium. The steady-state is 

either assumed to be stable, or the instability is largely ignored. The focus of 

this literature is more on how  ra ther than w h y  an  economy fluctuates. The 

question of w h y  is relegated to factors external to the economy.

This combination of a short-run market-clearing and long-run steady- 

state assumptions together with agent optimizations are the foundations of the 

new classical school of dynamic general equilibrium models. By assuming in -

j
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finite speed of price adjustment, these models make optimization synonym ous

with equilibrium. Thomas C ooley states:

Most economists now accept as incontrovertible the notion that theories 
of the business cycle should be consistent with the long-term observa­
tions about economic growth and with the principles of competitive  
equilibrium  theory (1995, xv, emphasis added).

This new classical school attributes the causes of cycles to external 

shocks, such as supply interruptions, technological innovations, government 

interference, and wars. Otherwise, they believe that the market economy will 

function smoothly. Their focuses are on the propagation mechanism of the 

economy from external shocks, while ignoring the possibility that impulses 

might be internally generated.

In contrast, the view that a market economy is best characterized by- 

turbulence and upsets is implied in proactive models with an internal dy ­

namic. According to this literature, not all markets clear at the same instanta­

neous speed. For example, the financial market clears faster than the product 

and labor markets.

From this nonmarket-clearing perspective, the fact that there might 

exist a price that a market can clear does not mean that the  market knows what 

that price is. Only through non-zero excess demand could that market-clearing 

price be revealed, especially when a new product is introduced. Furthermore, 

according to this literature, the market might not be converging towards the 

steady-state, especially when the steady-state is locally unstable. This nonm ar­

ket-clearing literature focuses more on the question of w hy  than how  an  

economy fluctuates. This focus leads to endogenous theories of business cycles 

and the study of the out-of-equilibrium adjustment mechanisms.

Some critics in this literature see the infatuation with steady-state 

equilibrium  among some new classical business cycle model builders as miss­

ing the point. “Everything that matters and is of interest to us happens b e­
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cause the system is not in equilibrium." For example, in meteorology, “The true 

equilibrium state, in the absence of heat input from the sun, is at a tem pera­

ture where all life comes to a  stop!” (Blatt 1983, 5).

From the endogenous and disequilibrium school perspective, the econ - 

omy that perhaps came close to being in a steady-state equilibrium was th e  

medieval economy. To compete in a market economy, firms do not seek balance 

in the market. Each firm innovates to create an imbalance that forces the oth - 

ers to follow-. The process of market competition, o r what Joseph Schumpeter 

termed “creative destruction” (Schumpeter, 1939), is one of the real driving 

forces that moves the economy forward.

The insistence on eternal market-clearing equilibrium is defensible 

only in a linear world (Puu 1993, 3); for it is an  unattainable modeling strategy 

otherwise. In a nonlinear world, however, it is no  cause for concern. On the 

contrary, builders of endogenous models are attracted to locally unstable and 

yet globally stable systems; for they make their systems more complex and in - 

teresting. Many of them  prefer the dynamical system approach to  the study of 

business cycles for its ability to capture, to a greater degree, the internal dy ­

namic of a complex system. They believe that the  observed business cycle can 

be better understood as the result of interactions of many conflicting forces at 

play, such as the conflict between capital and labor, between innovation and 

imitation, and between financial and real sectors of the economy. It is these 

conflicts that provide the economy with energy that causes it to fluctuate.

Critics of the new classical school, such as Victor Zamowitz, contend 

that exogenous school models — and the Real Business Cycle (RBC) models in 

particular — have no theoretical explanations for what might cause the econ - 

omy to fluctuate (1992, 46). Instead, causes a re  mystified as external 

(technological) shocks. Zamowitz notes: “It is very' unlikely, however, that
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any nationwide technological decline occurred in the recessions of 1949, 1954, 

1958,1960,1979 . . . without anyone having noted it at the time . . . . ” (p. 8)

For many economists of the endogenous school, the conditions for the 

existence of an Arrow-Debreu general equilibrium are either too stringent, 

not realistic, or simply irrelevant to the study of the modem business cycle. 

For example, as pointed out by Joseph Stiglitz (1994, 148), in a technologically 

changing world, there are no buyers for goods that have yet to be invented, 

thus the market could not be complete. Furthermore, in this perfectly com­

petitive world, there is no incentive to innovate (Stiglitz 1994, Ch. 8).

The nonmarket-clearing endogenous school — with a long history, run - 

ning from Marx through Kernes and his followers-, — attributes the causes of 

the business cycle to factors internal to the market economy. This school does 

not believe that the market economy has an inherent tendency to function 

smoothly; it sees cyclical phenom ena as a demonstration of the internal d y ­

namics of a complex economic system; and it believes that there is a “natu ra l” 

rhythm to a m arket economy.

Many endogenous school economists have used tools developed in non - 

linear dynamical systems as the basis for their business cycle theories^. In - 

stead of relying on external shocks, these economists often employ limit cycle 

analysis in modeling cyclical phenomena.

By adhering to linear time series models, however, more than half a 

century of empirical time series model builders, since G. Yule’s 1927 model of

1 The response by RBC model builders, such as Hansen and Prescott (1993), is that 
the cause of those recessions can be traced to changes in government regulations. This is 
an example of the view that government interference causes cycle in an otherwise smooth 
functioning market economy.

2 See, for example, surveys byr Zamowitz (1992, ch.2) and Mullineux (1990).
3 See, for example, Goodwin 1951, 1967; Lorenz 1993; Rosser 1991: Medio 1992; 

Klein and Preston 1969, and others.

i
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the Walfer’s sunspot numbers, have implicitly or explicitly supported the ex­

ogenous school. Theoretical as well as practical difficulties in building nonlin - 

ear time series models have prevented empirical researchers from doing oth - 

erwise.

The typical “Frisch-Slutsky” formulation is to separate the impulse from 

the propagation mechanism through lags. This formulation made it possible 

for a linear model to mimic the observed business cycle fluctuations.

Richard Goodwin (1990, 10) charges, however, that the formulation of 

"Frisch misled a generation of investigators by resolving the problem with ex­

ogenous shocks." Since linear models could not generate cycles endogenously, 

these economists became convinced that the real world economy also could not 

fluctuate without outside shocks.

Guy Laroque and Guillaume Rabault summarize the last 50 years:

Deterministic theories of the business cycle were very fashionable in 
the 1940s, as witness by the work of Goodwin (1951), Hicks (1950) and 
Kaldor (1940) among others. They were based on strong nonlinearities 
in investment behavior. Then the data came, and econometrics became 
popular. The econometricians need random  shocks and liked linear 
models. Adelman and Adelman (1959), studying the Klein Goldberger 
(1955) model, convinced the profession that the basic features of the cy ­
cle could be explained through the lag structure of a linear model. The 
large scale macroeconometric models of the 1960s therefore, paid little 
attention to nonlinearities. Eventually, Sims (1980) questioned the use of 
economic theory to specify lag structures and promoted the vector 
autoregressive modelling strategy: all nonlinearities disappeared from 
numbers of macroeconomic empirical studies (1995, 283).

The reason that nonlinearities disappeared, however, is more basic than 

these two authors indicate. Since neoclassical model builders view the ob­

served business cycle as an outcome of a  self-correcting system that passively 

responds to outside influences, a linear system is sufficient for this purpose4.

4 Lorenz notes that: “Nonlinear approaches to economic dynamics have been inves - 
tigated mainly by economists who felt uncomfortable with the classical paradigm of equi - 
librium economics” (Lorenz 1993, 25).
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To show how misleading it is to have a linear model mimic a nonlinear 

one, John Blatt (1978) regressed a linear model on data  generated by a simu­

lated John R. Hicks 1950 nonlinear investment accelerator model with ceilings 

and floors. The parameters derived from the linear regression falsely manifest 

a stable system when the true  system is far from stable. To distinguish linear 

and nonlinear time series, Blatt (1980, 1983) contrasted the average slope of 

many empirical series during ascending and descending phases. He found evi­

dence of asymmetry in the absolute value of the average slopes between the 

two phases. Blatt then concluded that all linear models of the Frisch type are 

thus incompatible with observed time series asymmetry.

Andy Mullineux and WenSheng Peng (1993) point out, that there is an 

inherent lim itation to the prevailing linear time series models. Without ex­

ogenous shocks, the economy either diverges or converges. The probability of 

sustained cycles in a linear model is zero. In a nonlinear world, however, local 

instability need not imply global instability. Internal as well as external fac­

tors can lead an economy to experience sustained cycles. Yet, a stable economy 

need not converge to a steady-state equilibrium point. One approach to model 

such a world is to model it as a limit cycle.

The concept of a limit cycle, loosely speaking, is simply the idea that a 

series, free from outside shocks and insensitive to starting values, will wander 

around within some bounded region, repeatedly traversing its path time after 

time. Shocks within the bounded region can only alter its regularity, not its 

basic cyclical characteristic.

Many non-economic time series statisticians take for granted that busi­

ness cycles should be modeled as limit cycles. "It is our view that if the notion 

of a business cycle is to be taken seriously [,] it must be related to a non-linear 

economic system, not unlike a limit cycle in a dynamical system" (Tong 1990,

i
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2 3 2 ) .

To date, however, few nonlinear time series models that permit limit cy­

cles derive their parameters from real world economic data. It is the objective 

of this dissertation to expand the arsenal of models that can accommodate en - 

dogenous cycles — as a step toward effective empirical modeling of the busi - 

ness cycle.

In the pages that follow I provide some rationales in section 2 for the 

existence of internal dynamics in an economy. In this section I also review' the 

empirical evidence for time series nonlinearity over the business cycle, and 

survey endogenous business cycle theories and their implications for time se­

ries models. In section 3, I formulate and in section 4, estimate a class of self­

switching Markov models of the U.S. business cycle. The estimation provides 

empirical evidence for modelling the business cycle as an endogenous cycle, 

perhaps even a limit cycle. Finally I discuss the conclusions of the research 

and their implications.

i
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2. Business Cycle Dynamics

2.1. I n tr o d u c tio n

Theories of the business cycle that rely exclusively on exogenous shocks to 

generate cycles are unsatisfactory, for the exogeneity of the shocks are un - 

convincing, especially the shocks to  technology. What is considered, for ex­

ample, an exogenous technological shock, might be largely generated e n ­

dogenously within the market.

W ithout obscuring the causes to external factors, one is faced with the 

challenge of trying to answer the question of w h y  an  economy fluctuates. This 

section sets out to examine some internal factors that might contribute to the 

business cycle; some evidence in time series data that might justify seeking 

internal causes; and some models that might endogenize economic dynamics.

2.2. Dynannies via N o n lin ea r  Feedback

There are two distinct approaches to analyzing and theorizing a market econ - 

omy. They differ on whither market clears at all times or not. Peter Flaschel, 

Reiner Franke, and Willi Semmler (1997) summarize these differences. Mar­

ke t-c learing

Macrotheory is built on microeconomic principles, using the competi­
tive equilibrium model with given endowments of agents, preferences 
and technology as a reference model. The equilibrium approach posits 
that representative agents (e.g., consumers, firms) are rational, have 
full information, and optimize intertemporally. The paths of prices, 
wages, and rental rates of capital are usually assumed to be known in 
advance. The decision-making process is modeled as if decisions are un - 
dertaken by an idealized policy maker and as if this were a good ap­
proximation of the complex decision making in an industrial society (p. 
2 ).
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Nonmarket-clearing macrotheory

. . . focused on diverse sources of instability and macroeconomic fluc­
tuations. Instabilities are seen to originate in: (i) stock-flow relation­
ships (for example, accelerator-multiplier or output-inventory interac­
tions); (ii) price dynamics and price expectation dynamics (nominal- 
real interaction); (iii) large dem and shocks; (i v) the conflict over dis­
tributive shares; and (v) the financial sector and the financial-real in ­
teraction. . . (p. 4).

In the spirit of the nonmarket-clearing approach, I will examine eco­

nomic factors that can contribute to dynamic interactions. In various ways 

these factors can generate strong feedback that might prevent the market 

from clearing instantaneously, or cause a  steady-state equilibrium to be un - 

stable.

2 .2 .1 . Dual Roles of C om petition 

The foundation of new classical analysis is built upon a competitive equilib­

rium  where

The dom inant adjustment mechanisms are price adjustments, which are 
supposed to equilibrate markets infinitely fast. A perfect foresight path 
of prices is often assumed so that markets can instantaneously clear. In 
intertem poral models with typical saddle point properties, prices are as­
sumed to jump in order to bring about convergence to the long-run 
equilibrium. Product markets are cleared, and imbalances in the labor 
market are seen to be a result of the choice between leisure-work effort 
(Flaschel, Franke and Semmler 1997, 2-3).

From a nonmarket-clearing perspective, competition does not neces­

sarily bring an economy to a short-run or a long-run equilibrium5. The sta­

bility of the equilibrium point and the speed of convergence in a model econ - 

omy are critical to the outcome, due to the dual roles of competition in a pro­

duction economy. In contrast to a pure exchange economy, competition is not 

only a force th a t equalizes prices and rates of profits between firms, but it also 

can be a force that destroys any hope of the economy to maintain a state of

5 The classical economists, especially Marx seems to have a more realistic view of 
competition than contemporary neoclassical or new classical economists (see, for example, 
Clarke, 1994, Ch. 2).

i
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equilibrium  for long.

In the long-run, firms either imitate o r innovate. Both acti\ities take 

place simultaneously. Before im itators have a chance to equalize the market, 

innovators might have already underm ined the opportunity for tranquillity .

It is sim ilar to a cat chasing its tail. The long-run equilibrium can be a moving 

target due to innovators. If the rate of convergence is low, the economy could 

endlessly chase after the  long-run equilibrium , with little hope of ever 

reaching it. Thus, imitation is like a centripetal force w hile innovation is like 

a centrifugal force. It is the contradiction between these two forces that gives 

energy and v ig o r to a  market economy (Schumpeter, 1939). The business cycle 

is but one m anifestation of this contradiction.

In the short-run, competition might not lead to a market-cleaming 

equilibrium either. To maintain a state of equilibrium where the markets are 

always cleared, new classical models, such as RBC models, treat innovations as 

exogenous shocks, not endogenous inspirations based on market conditions. If 

innovations are endogenous, the insistence that all markets are always cleared 

becomes problematic. For a market to clear immediately after each innovation, 

the market needs to know what the market-clearing price is. This requires 

perfect foresight, a requirement tha t is inconsistent with endogenous tech - 

nological innovations.

Since production is a sequential process, the nonmarket-clearing ap­

proach sees a  production economy different from a pure exchange economy.

In a production economy, not all demands for a new technology, o r a new 

product can be satisfied instantly, and no quantities of goods can be produced 

instantaneously. Without perfect foresight, the market-clearing equilibrium 

price in the product market can only be revealed through an iterative process 

that relies on the signals from the non-zero excess demands. This is one exam-
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pie of the difference in the speed of adjustment between financial and product 

markets stressed by the nonmarket-clearing approach.

Furthermore, a change in technology is not seen as an economy wide or 

an industry wide phenomena. New technology takes time to defuse. Between 

the initial investment and the  initial product’s introduction into the market 

place, there is a time lag.

In addition, not all innovations prove to be profitable. It takes time for 

others to be convinced that they are worth imitating. Thus, for an innovation 

to succeed, it must withstand the test of time.

The time lag is seen as a fac to r working against the neoclassical notion 

of a m arket-clearing equilibrium  in the short-run and the steady-state equi­

librium in the long-run. The diffusion process — made evident by the time lag 

— is seen as capable of preventing the economy from reaching a new equilib­

rium point instantly . Before the market-clearing price is reached, the econ - 

omy is in a disequilibrium. Before the diffusion is complete, the economy is not 

in a steady-state. Since technological change occurs constantly, disequili­

brium is viewed as pervasive, w hile equilibrium is seen as only tem porary.

Market-clearing approach, however, sees the diffusion time lag as a re ­

sult of the cost of adjustment. In RBC models, for example, the time lag, or “time 

to build” (see, for example, Kydland and Prescott 1982) is seen as the reason for 

an evolving equilibrium point over time, not as a reflection of the market ad­

justm ent towards equilibrium. Moreover, the assumption of perfect foresight 

allows the market to clear at all times as the economy moves toward the steady- 

state equilibrium after each shock.

It seems ironic that the  RBC approach, while stressing micro-fundations 

and technological innovations to the study of business cycles, provides no mi - 

cro-foundation for technological innovations. The RBC approach merges in-
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novators and imitators, and thereby eliminates the motivation for firms to i n ­

novate or to imitate. The optimization problem posed by a typical RBC model 

ignores potential gains from innovation or imitation.

In the real world, however, there is a critical time lag from innovation 

to imitation (see, for example, Cheng and Dinopoulos 1992). During this period, 

innovators can enjoy a higher than long-run equilibrium  profit (see, for ex­

ample, Deneckere and Judd 1992).

2 .2 .2 . O v e r-p ro d u c tio n  

What Karl Marx viewed as the “crisis of over-production "(see, for example, 

Clarke, 1994) and what Joseph Schumpeter (1939) viewed as “creative destruc­

tion” are different formulations for the same phenomenon. Competing m odern 

firms do not plan their production scale according to the equilibrium level of 

market supply and demand. Instead, each wants to gain market share at thei r 

com petitor’s expense. Over-production is often used as a competitive tool to 

drive out high cost producers. Consequently, the business cycle is necessary  

for a v ib ran t market economy (Cheng and Dinopoulos, 1992). Without it, in e f­

ficient producers would not withdraw from the market by themselves.

From a market-clearing perspective, “creative destruction” can be m od­

eled as an equilibrium response to changes in technology or taste. Ricardo J. 

Caballero and Mohamad L Hammour (1994) studied the “cleansing effect” of a 

recession in their market-clearing dynamic partial equilibrium model. Since 

capital destruction is costly, firms in their model can meet the changes in 

market dem and by either creating new capital that embeds more efficient 

technology o r destroying the less efficient old capital.

To m aintain market-clearing, though, the changes in technology or 

demand must be exogenous. When over-production is used as a competitive 

tool, in the sense that some firms are willing to sustain sort term losses to

i
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achieve long term gains, the changes in technology are no longer purely ex­

ogenous phenomena; neither is the change in demand. Thus the market might 

not be cleared during each period.

2 .2.3. V ariable R e tu rn s  to  Scale

Another factor that potentially' can destabilize an economy is the variation in 

optimal return  to scale induced by technological change. Each innovation 

might represent a structural change that alters the optimum scale of produc­

tion and changes the optimum num ber of firms in each industry. This outcome 

occurs when returns to scale a re  a  nonlinear function of the scale — where 

output might be increasing at one level and decreasing or constant at another.

For ease of analysis, the returns to scale tend to be fixed in most eco­

nomic models. This assumption is acceptable as a local approximation of a long- 

run equilibrium point. It might be invalid, however, if the economy moves too 

far away from the equilibrium point, — a possibility that is largely ignored in 

market-clearing models.

A change in optimum scale can be destabilizing, for it can create op­

portunities for new entries or can force some existing firm s to exit. Some RBC 

models attem pt to address the issue of entry and exit together with increasing 

returns to scale (see, for example, Homstein 1993, Devereux, Head, and Lapham 

1996). But, by assuming infinite speed of price adjustment, market is always 

cleared, and the returns to scale is essentially fixed.

2.2.4. Factor su b s ti tu ta b ili ty

Like many other aspects of the economy, factor substitution requires also the 

passage of time. Investment capital behaves more like a mass of putty initially: 

it can be molded into any combination of physical capital and labor. Once the 

investment is made into physical capital, however, it behaves more like a mass 

of clay. Remolding becomes costly.

£
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With heterogeneous production and varying capital intensity, the d y ­

namic path of an economy might be unstable. A change in a factor price can 

lead to a disequilibrium in the short-run. There might not be a steady-state 

equilibrium in the long-run either, due to the instability of the dynamic path. 

This outcome is often the case with extensions of Goodwin’s 1967 growth mod­

els (see, for example, Flaschel, Franke, and Semmler 1997, Ch. 4).

Given the adjustm ent cost and the narrow range of physical capital- 

labor substitutability in the short run, technology is perhaps better rep re­

sented by a fixed proportion Leontief production function. In the long run, 

Cobb-Douglas is perhaps a better representation, since firms can adjust, over 

time, to technologies with the most profitable capital-labor ratio. In a im per­

fectly competitive world, a factor’s share can affect the pace and the  type of 

technological innovations and adaptations, so that a factor price is not purely 

determined by its marginal product6.

2.2.5. Risk versus U n c e r ta in ty  

Technological progress introduces an element of uncertainty in a production 

economy that is different from risk. This difference largely has been ignored 

by neoclassical models.

Take, for example, the assumption of perfect foresight. In an  uncertain 

world, it is not possible to have contingent contracts—a pure exchange econ­

omy concept -  for all possible future technological innovations. Unlike the 

expected value of a lo ttery  that can be calculated from a known distribution, 

the likely market value of an innovation, as a random variable, has no known 

(objective) moments. The track record of past innovations provides only a

6 It is perhaps because of the changes in substitutability with time that Flaschel, 
Franke and Semmler (1997, Ch. 11) dismiss the neoclassical marginalist view in their 
model.
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suggestion — it is only a subjective guide for expectation formation. The shape 

of the distribution or its parameters cannot be known with certainty.

Similarly, a “rational expectation" could not be objectively rational, 

since the true  distribution is not known. Under true uncertainty, the ex ante 

optimizing surface is flat. The range of behaviors that is consistent with opti - 

mization is great. As pointed out by Axel Leijonhufvud (1993), one should only 

impose ex post  rationality, for ex ante rationality is indeterm inate under true 

uncertain ty .

If every agent is capable of forming only subjective expectations, the 

chance of all their expectations being consistent with each other is nil. Since 

consistency of expectations among all economic agents in the economy is a 

necessary condition for the solution of a rational expectation model, true un - 

certainty presents a formidable challenge to that class of models.

Allan H. Meltzer (1982) formally distinguished the difference between 

risk and uncertainty. The former involves only a transitory change, while the 

latter reflects a perm anent change. Whereas tem porary changes can be cap­

tured in the erro r term  of a regression model, structural changes cannot. The 

latter is what Meltzer means by uncertainty.

In a time series framework, the existence of true uncertainty implies 

that the ergodicity assumption is invalid or misleading (Davidson 1991, 133). 

Thus by assuming ergodicity, one assumes away the difference between risk 

and uncertainty. Since theories of non-ergodic time series are underdevel­

oped, in practice one is forced to assume ergodicity.

The existence of true uncertainty lends support to the rationality of 

adaptive expectations, or Keynes' “animal spirits.” Elaborating on Meltzer 

1982, Mullineux (1990, 41) states: “Under uncertainty, instead of forming ex­

pectations independently, agents must take account of the weight of opinion
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guiding the activities of o ther agents in the manner of the Keynes (193b, 15b) 

‘beauty contest’ exam ple”.

In other words, economic agents learn from each other what the true 

nature of the world is. The learning and consensus-forming activities take 

time. When the road ahead is foggy, the optimizing behavior of a driver on a 

highway is to slow down. By analogy, true uncertainty can prevent the fast 

convergence of the economy to a new long-run equilibrium  point.

Furthermore, from a  nonmarket-clearing perspective, agents without 

full information,

. . . cannot fully optimize since the “cost of optimization" — properly 
computed — might be very large and, even worse, not known in ad­
vance. This often results in the presupposition of bounded rationality or 
procedural rationality in which agents imitate the  behavior of others, 
follow rules of thum b, and adjust gradually to a changing environment 
(Flaschel, Franke and Semmler 1997, 4).

Thus, true uncertainty creates more than just a  continuum of equilibria, 

where a purely exogenous event such as a change in the “sun spots" d e te r­

mines the actual outcome. Many authors, including Flaschel, Franke and 

Semmler (1997) have shown that infinite speed of price and expectation ad­

justm ent can lead to instability, not steady-state equilibrium .

2.2.6. In v es tm en t M u ltip lier an d  Bubble 

That the m ultiplier-accelerator effect of investment spending can cause the 

equilibrium point of a model economy to be unstable has long been recognized 

by economists (Hicks 1950 and Kaldor 1940). True uncertainty in the face of 

technological innovations might be the underlying reason for this instability.

Goodwin (1990, 19) has given an example of how an investment bubble 

might happen under uncertainty. If innovation occurs only once, the time lag 

stemming from the diffusion of technology, with its accelerated initial in ­

vestment in adapting the  new technology, can lead to an investment boom.

i
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Later when the diffusion is complete, a bust occurs due to the deceleration of 

investm ent. Optimizing behavior does not eliminate the boom or the bust as 

long as the same innovation does not occur in all firms simultaneously. Only 

an assumption o f perfect foresight could eliminate it.

Differential rates of investment growth between capital goods and con­

sumption goods industries can be another source of instability. Given the un - 

certainty due to innovations in a production economy, it would be unlikely for 

the current level of investment spending in the capital goods industry to be 

consistent with both the following at the same time: the future level of in - 

vestment spending in the same industry, and the future level of consumption 

that would have been stimulated by the current spending. This is one source of 

internal dynamics of many two sector growth models7.

2.2.7. D estab iliz ing  Money H olding 

Historically, the role of money as a store of wealth emerged partially in re ­

sponse to the true  uncertainty in the economy. A quantity of money in circu­

lation represents a claim on goods and services in general, and its value is 

more certain than the holding of a particular good alone. Money holding ren - 

ders Say’s law — supply creates its own demand — invalid in the short run. (In 

the long run, Say’s law is meaningless other than an identity). As a  result, this 

role for money makes the economy less stable than a barter economy.

In a barte r economy, by Say’s law, every intended investment purchase 

is also an intended sale. The difference between two intended transactions is 

zero in every period. In a momentaiy economy, by contrast, an investor does 

not have to invest if the expected return in one period is below a threshold.

7 See, for example survey by Nishimura and Sorger 1996 for the market-clearing 
approach to internal dynamic models. Related also is Marx’s idea of the disproportion that 
happens between the production of investment goods and consumption goods in a capitalist 
economy. See, for example, Clarke 1994.

i
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The investor can invest the idle money in the next period when the expected 

return is higher. Thus the total intended sale can be higher or lower than the 

total intended purchase in each period. The difference reflects the change in 

intended money holding. This kind of fluctuation in intended investment has 

long been recognized by economists as the leading cause of business cycles.

Neoclassical models typically assume that savings equals investment. 

This approach eliminates the role of money as a store of value. The focus in - 

stead is on the transaction dem and for money. Consequently, Keynes’ liquidity 

trap cannot exist in their linear and perfectly competitive models.

Given the role of money as a store of wealth, changing expectations of 

the future value of that wealth, or rapid swings in inflationary expectations 

can create havoc in a m onetary economy. Both consumption and investment 

can be affected by these changes in inflationary expectations. Money, thus, 

creates an additional source of instability in an economy.

2 .2 .8 . C ap ita l D eprec ia tion  and  U tilization 

Investment spending by firms can be “synchronized” by the business cycle. 

Automobile sales, for example, typically  boom during the recovery' phase of a 

business cycle. The boom, however, plants the seed for a fixed capital replace­

ment cohort 8 to 10 years later, and subsequently, a market saturation and bust 

in that industry.

Another source of endogenous fluctuation is a phenomenon called "self­

organized criticality." Per Bak et al. (1993) have shown that instead of small 

sector fluctuations canceling out when their activities are aggregated, local 

interactions between production units together with non-convex technology 

can cause aggregate fluctuations. "Large interactive dynamic systems can 

‘self-organize’ into a critical state .” A state that “can actually be an attractor 

for the dynamical system, toward which the system naturally ev olves, and to

j
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which it returns after being perturbed by some large external shock”(p. 5). 

Like an avalanche that can be caused by dropping an additional grain of sand 

to a sand pile that has grown to a critical shape (a prototypical example of such 

self-organized criticality), an economy that is close to its capacity can experi­

ence great fluctuations when a shock to one firm can amplifies throughout 

the economy. In other words, the destabilizing impact of an innovation to the 

economy is higher when the economy is closer to full capacity than at other 

times.

2.2.9. A sym m etry  o f  In fo rm ation  

Stiglitz has devoted most of his professional life to the study of asymmetry of 

information. He has argued forcefully in his numerous writings (Stiglitz 1994 

and the references therein) tha t not only is perfect foresight unattainable in 

the real world, but it is also contrary to the optimizing behavior of agents. If 

knowledge is valuable in the m arket place, it will not be freely shared. Instead, 

there is an incentive to misinform potential competitors. To innovate is to find 

new and better ways to do something that others have not been able to do. The 

assumption of perfect foresight denies this possibility and thus deprives 

agents the incentive to innovate.

Asymmetry of information plays a critical role also in many o ther as­

pects of the economy, as pointed out by Stiglitz in his numerous writings. In 

the financial sector, it leads to credit rationing — when the interest rate alone 

is an insufficient criterion for investment decision. Banks and creditors need 

more than  just a higher interest rate to screen out low return investment 

projects; for it can also screen out low risk projects. A debtor knows the risk of 

his or her default better than  a lender. Thus, there might not be an interest 

rate level for which the desired investment equals the desired savings when 

information is asymmetrical.
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In the labor market, asymmetry of information leads to an efficiency 

wage that is higher than  the neoclassical marginal product wage. A higher 

wage attracts h igher quality workers when monitoring and enforcement cost 

of labor inputs are non-zero. This situation prevents the labor market from 

clearing in the neoclassical manner.

Besides preventing the market to clear, asymmetry of information can 

contribute to the  business cycle more directly. Stiglitz (1993) developed a 

model that makes research and development (R&D) spending pro-cyclical.

Since an investm ent on R&D is not collateralizable, the funding is mostly from  

an in te rn a l source. An economic fluctuation can cause a change in the R&D 

spending that is internally funded. The change in the R&D spending, in turn, 

will cause a fluctuation in the volume of technological innovations that affect 

the growth rate of the economy. This positive feedback can  prevent the econ - 

omy from converging to a  steady-state growth path.

In summary, m any of the neoclassical assumptions h inder our ability to 

understand the observed business cycle. For instance, neither is perfect 

foresight a good representation of the behavior of people in a technologically 

changing world, nor is instantaneous market-clearing a good approximation 

of the price form ation in a dynamic economy. Steady-state equilibrium is also 

not a good characterization of the market dynamics.

Instead, a  market economy is better understood as having a bounded ra ­

tionality with delayed market-clearing and a  unstable growth path. The ad­

justment speed towards the equilibrium or the steady-state and the instability 

of the equilibrium  or the steady-state are the central components of a dynamic 

macroeconomy.

The factors that I have just reviewed underlie these aspects of the econ -
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omy. They either slow down the speed of adjustment towards a market-clearing 

equilibrium, or they make the steady-state equilibrium unstable. Both phe­

nomena of nonmarket-clearing and unstable steady-state can exist more likely 

in a nonlinear world. Thus I now turn  to the evidence of nonlinearity in the 

real-world market economy.

2.3. Evidence  o f  N on linear ity  

A system of nonlinear feedback can manifest itself in nonlinear behavior of 

time series data. Finding nonlinearities in a variety of macro time series thus 

provides an empirical foundation for endogenous business cycle models. With - 

out such empirical support, the rationales listed above for endogenizing busi - 

ness cycles amount only to empty theories.

A telltale sign of a  nonlinear data series is the asymmetry of its distri - 

bution. Since a linear function is skew-symmetric, distributional asymmetry 

in a time series might be explained either by an asymmetric shock, or by a 

nonlinear data generating function (Tong 1983, 16). Simon Potter (1994, 320) 

points out, however, th a t an asymmetric shock cannot account for an asym­

metric response — only a nonlinear data generating function can.

Assuming that distributional asymmetry is from a nonlinear data gen - 

erating function, a host of nonlinearity tests in the time domain has been d e ­

veloped in the literature8. They have tested linearity against either non- 

linearities in general, o r a specific class of nonlinearity. The power of each 

test is sensitive to the type of nonlinearity encountered (see, for example, the 

examination by Terasvirta 1996).

The task of identifying nonlinearity in a macro time series is hampered

8  De Gooijer and Kumar (1992) surveyed the literature on recent developments in 
the linearity tests.
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by the process of aggregation. For example, the U.S. GDP series is an aggre­

gated series from  many component series. One of them is the gross domestic 

investment series. Suppose the latter series displays clear signs of nonlinear­

ity. The aggregation process, however, could conceivably dilute any signs of 

nonlinearity in  the aggregate series. Despite this difficulty, many economists 

have found evidence of nonlinearities in  m any U.S. macro time series.

Salih Neftci (1984) used a three-state Markov chain to calculate the 

transition probabilities of a series movement from expansion phase to con - 

traction phase. The asymmetry of transition probabilities is seen as a sign of 

nonlinearity. He found significant evidence of nonlinearity in the U.S. unem­

ployment rate. Although Daniel Sichel (1989) found a probable e rro r in 

Neftci's test, Philip Rothman (1991) used a modified Neftci test, and confirmed 

Neftci's earlier findings.

J. Bradford DeLong and Lawrence Summers (1986) conducted a simple 

skewness test on U.S. macro data, such as GNP and the Industrial Production 

(IP) index. They wanted to test the claim m ade by John Keynes (1936) and 

Wesley Mitchell (1927) that the shape of a  downturn is steeper than  the shape 

of an upturn in a business cycle. They found evidence of asymmetry in the 

unemployment series only. They found no evidence of asymmetry in the GNP 

or IP series.

Zamowitz (1992, 258) suspects that DeLong and Summers’ conclusion is 

“premature, being based on uncertain assumptions and evidence” in deriving 

their standard error. Potter (1994, 315) points out that the test used by DeLong 

and Summers — the expectations of the th ird  moment — is the weakest of all 

asymmetry tests.

Timo Terasvirta and Heather M. Anderson (1993) tested the industrial 

production index of 13 countries and the combined “Europe" index. They re-

i
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jected linearity assumptions in most of the series using smooth threshold 

autoregressive (STAR) models. C. Q, Cao and Ruey. S. Tsay (1993) also found the 

volatility of the monthly stock returns from 1928 to 1989 in NYSE to be nonlin­

ear.

Both James Hamilton (1989) and Andrew Filardo’s (1994) results can be 

seen as evidence of nonlinearity in the series they have studied (U.S. GNP and 

post WWII IP index, respectively). Both found asymmetric transition prob­

abilities in the data from recession to recovery and vise versa.

Sichel (1991) estimated a parametric hazard function model and found 

asymmetric business cycle duration  dependency. He found tha t the length of 

contraction affects the hazard rate of recovery, but the length of expansion 

does not affect the hazard rate  of contraction. Similarly, AUan Brunner (1992) 

found evidence of conditional asymmetry in the real GNP growth rate using a 

semi-nonparametric approach. He found the persistence during an expansion 

is greater than the persistence during a contraction. Robert Hussey (1992) 

found an asymmetric conditional variance in employment data  — the condi - 

tional variance is larger following a contraction than following an expansion.

Supporting earlier findings, Grant McQueen and Steven Thorlev (1993) 

found asymmetric business cycle turning points. They found "round" peaks 

and "sharp" troughs in growth rate variations. Paul Beaudry and Gary Koop

(1993) found that a positive shock to the growth rate is more persistent than a 

negative shock.

Once the economists start looking for nonlinearity in the  data, the evi­

dence seems to appear everywhere. Economists should no longer ignore this 

real-world nonlinearity when constructing their models.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

2.4. M odels o f  In ternal D ynamics  

From the numerous studies cited, clearly the data generating processes d e te r­

mining most macro time series are not linear. To understand  the process, many 

economists have developed various nonlinear models that attem pt to highlight 

key features of a market economy’s internal dynamics.

Mullineux and Peng (1993) give an excellent introductory- survey of 

nonlinear endogenous business cycle models in both the  Keynesian and equ i­

librium traditions.

In the Keynesian tradition, they surveyed early models based on Hicks’ 

1950 model with consumption ceiling and investment floor, Nicholas Kaldor's 

1940 nonlinear investment function model, and Goodwin's 1951 nonlinear in ­

vestment accelerator model. They also surveyed models based on Goodwin’s 

1967 capital-labor dynamic growth model and H. Rose's 1967 nonlinear Phillips 

curve model.

A common assumption in the Keynesian tradition is that markets do not 

clear instantaneously. Deterministic cycles emerge in these models simply 

from nonlinearities of the models. This approach in modeling business cycles 

has been criticized in the 1970’s by new classical economists as being too ad- 

hoc, for the behavior assumptions in those models were not based on solutions 

to any agent optimization problems. Ever since then, the economic literature 

has been dom inated by the new classical models.

The discovery^ of low dimensional chaos in last few decades and the evi - 

dence of nonlinearity in time series data  post new challenges to the new clas­

sical tradition. These developments make endogenous cycles more likely, but 

do “not set well with the idea of strict economic equilibrium ” (Benhabib 1992, 

3).

Faced with the challenge, many new classical economists have devel-

i
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oped sophisticated models to show the possibility of cycles and chaos in their

models. The collection in Jess Benhabib (1992) is an attempt in this direction.

containing many interesting general equilibrium endogenous cycle models.

Mullineux and Peng (1993) surveyed also other models in this tradition, such

as Richard H. Day’s 1982 nonlinear growth model with chaotic tendencies, and

Jean-Michel Grandmont’s 1985 and 1986 nonlinear over-lapping generation

model with non-neutrality of money9.

Endogenous cycles, nonetheless, do not occur naturally in the market-

clearing equilibrium tradition.

If w'e assume complete markets and decreasing returns to scale, how - 
ever, optimal growth models can display interesting fluctuations only 
when extreme param eter constellations, for example, extremely high 
discount rates, are assumed (Flaschel, Franke, and Semmler 1997, 3).

In contrast, endogenous cycles occur quite naturally in the  nonmarket- 

clearing tradition. For example, Goodwin’s 1967 predator-prey model of capi­

tal-labor dynamic is well known for its limit cycle property. Although Good­

win’s model does not start from the principle of agent optimization, it does not 

follow' that his model is incompatible with the principle. Renato Balducci, G. 

Candela and G. Ricci (1984) developed an optimization model in a  non- 

cooperative differential game setting for which Goodwin’s model is a simpli­

fied version. Balducci, Candela, and Ricci (1984) showed that even when agents 

discount future consumptions and prefer consumption smoothing, the Nash- 

equilibrium is still not globally stable. The time path of the model is a limit cy - 

cle, or an irregular motion, depending on the assumptions made.

Many new contributions to nonlinear endogenous business cycle th e ­

ory in the nonmarket-clearing tradition have appeared since Mullineux and

9 Other new contributions to endogenous cycles in the general equilibrium tradi - 
tion have been surveyed by Nishimura and Sorger (1996).
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Peng’s 1993 survey. Among them, Duncan Foley (1992) developed a business 

cycle model based on rationally behaving representative firms facing real li­

quidity costs, production lags, and a systematic money supply rule. In his 

model, a stable limit cycle occurs due to the instability of the stationary equi - 

librium.

Laroque and Rabault (1995) developed a perfect foresight over-lapping 

generation inventory cycle model that endogenizes the cycle. They also esti­

mated the model using the U.S. GNP data. In their model, the cycles persist due 

to the asymmetric specification of the growth and recessionary phases of the 

economy.

In Semmler (1989; 1994), there are many new extensions to the nonlin­

ear business cycle models of Hicks (1950), Michal Kalecki (1935), Kaldor (1940), 

and Goodwin (1967), as well as nonlinear extensions of Keynesian business cy­

cle models. The emphasis is in the macro instability introduced by financial 

instability.

Raymond Deneckere and Kenneth Judd (1992) developed a model based 

on the interactions between innovators and imitators that causes capital in ­

vestment to follow a limit cycle path or to be chaotic. In this model, the notion 

of general equilibrium is replaced with the  momentary monopoly power of the 

innovators.

The dom inant business cycle models in the contemporary economic lit­

erature are the RBC models. They are not endogenous cycle models. Although 

these general equilibrium models are dynamic, the dynamics are externally 

imposed through shocks. Geert Rouwenhorst (1991, 242) charges that

For persistent deviations in output and investment to occur in the neo­
classical model it is required that the time series of shocks that hit the 
economy behave very much like the fluctuations which the model seeks 
to explain.
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Furthermore, RBC models typically assume investment and consumption 

decisions are made by the same “representative” agents in the economy. Jean- 

Pierre Danthine and John Donaldson (1995, 228) reveal that this is a key to a 

successful RBC modeling strategy, i.e., “only one model agent solves an in - 

tertemporal problem .”

The merging of these two very distinct roles glosses over one of the 

main contradictions in a market economy. It removes at one stroke the dy ­

namic interplay between firms’ profit optimization problem on the one hand, 

and households’ consumption optimization problem on the other. This distinc­

tion is neglected because in the neoclassical world,

. . . capital markets are assumed to be perfect and spending is d e te r­
mined by an equilibrium path. . . . Liquidity and borrowing constraints 
resulting from imperfect capital markets, which means that one cannot 
borrow against future income without collaterals, are mainly disre­
garded (Flaschel, Franke and Semmler 1997, 3).

The assumption of homogeneity is crucial in a dynamic general equilib­

rium model. When heterogeneity- is introduced into a model, either by assum­

ing heterogeneity of agents (such as capital and labor), or by assuming het­

erogeneity of products (such as capital goods and consumption goods), the 

maintenance of a state of equilibrium becomes problematic. George Stadler 

(1994, p. 1771) points out that

Even introducing a small am ount of agent heterogeneity can have de­
structive consequences. If agents have identical preferences, and differ 
only in terms of the income they receive, the “representative agent” 
for such an economy need not be well behaved and the economy can 
manifest a large number of unstable equilibria

Without an out-of-equilibrium adjustm ent mechanism, these types of models

are not credible. Furthermore, multi-sector RBC models “[have] the property

that aggregate randomness disappears if the num ber of sectors is made large"

(Baketal. 1993, 2n. 2).

Neoclassical economists are more willing to accept chaos than limit cy-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

28

cle as the basic model of the business cycle. Jose Scheinkman (1990). for exam­

ple, argues that a purely deterministic model could not reasonably explain the 

behavior of aggregate quantities or asset pricing in an actual economy. De­

terministic chaos looks random, so models based on chaos can be grouped to ­

gether with stochastic general equilibrium  models.

From a non-neoclassical endogenous business cycle perspective, a limit 

cycle model is more promising than a chaos model. Limit cycle and business 

cycle share m any features in common. First, we observe neither an ever- 

increasing growth rate nor an unending contraction in any market economy. 

There seems to be a bounded region whin which the growth rates of most of 

the industrialized countries' economy operate. (Even during the Great 

Depression of the 1930’s, the contraction lasted only a few years, not 

generations). Second, a period of high growth is sure to be followed by a 

period of low growth or contraction; just as a period of contraction lays the 

foundation for eventual recovery and higher growth. However, a business 

cycle is more than a limit cycle: it has stochastic elements th a t make it 

irregu lar.

Chaos, as a business cycle model, is not very credible for theoretical 

reasons. Michele Boldrin (1994) lists many economic impediments to chaos. 

Chief among them  is the preference for consumption smoothing. It also 

suffers from a lack of empirical evidence (see for example Brook and Sayers 

1992; Ramsey, Sayers, and Rothman 1992; and Sayers 1994).

Nevertheless, one major achievement of the m odem  endogenous busi - 

ness cycle m odel builders is that they have shown that cycles can occur in a 

model economy without violating the principle of agent optimization. The reli­

ance on external shocks is no longer necessary in an optimizing model of the 

business cycle.

J
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2.5. C onc lu s ion  

Given the rationals of dynamic feedback, the evidence of nonlinearity, and 

theoretical models of endogenous business cycles, empirical researchers are 

now challenged to dev elop nonlinear time series models for the study of real 

world business cycles. The task is to build models that can better accommodate 

the observed nonlinearity, and to  embed the feedback mechanism within the 

model so that one can test various aspects of a theoretical model. Towards this 

end, a class of self-switching Markov models is developed next.

i

i
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3. Internal Dynamics via Self-Switching Markov Models

3.1. I n t r o d u c t i o n  

The motivation for developing a self-switching Markov model of the business 

cycle is mainly based on the desire to have a model that can capture the 

“natural” rhythm  of a market economy. Since linear models cannot generate 

robust and persistent cycles without shocks, their value for business cycle 

analysis is limited mainly to questions of how  an economy fluctuates, not why. 

Furthermore, the response function (the skeleton, the deterministic part, or 

the non-stochastic part) of a linear model is symmetric, thus incompatible 

with the time series data exhibiting asymmetric behavior. Nonlinear endoge­

nous models are better suited to study the questions of why, have greater ex­

planatory power for the persistence of cycles, and are more compatible with 

the distributional asymmetry found in the data.

The question of w h y  an economy fluctuates can be addressed in a non - 

linear time series model in various ways. The first step is to show that there is 

a systematic cycle, such as a limit cycle, in the business cycle. The existence of 

a limit cycle in the time series data indirectly validates theories of business 

cycle endogeneity. Secondly, the transition dynamics in a self-switching 

Markov model can shed some light to the nature of the business cycle. Thirdly, 

in a higher dimensional multivariate system, the relative importance of each 

series to the transition dynamics can be studied. The questions regarding 

macro aggregates, such as the money supply, interest rate, unemployment 

rate, and the wage share, to the output fluctuation can be addressed in future 

research .

J
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To build nonlinear models, Flaschel, Franke, and Semmler (1997, 283) 

used three “essential nonlinearities” in the continuous-time. They are 

“regime changes”; “viability constraints”, i.e., ceilings and floors; and “ the 

time rate of change of variables (derivative control)”. The task of employing 

all three type of nonlinearities in discrete time models can be formidable. In - 

stead I will model mainly the first type of nonlinearity, i.e., threshold and re ­

gime switching. Occasionally, I might be able to model the th ird  type, the de­

rivative control, using a pseudo time rate of change as a contributing factor in 

regime switching.

A useful tool in modeling fluctuations in a time series model is to have a 

mechanism for feedback. The lag structure in a linear model is one feedback 

mechanism. The limitation here is that the combined feedback, both positive 

and negative, must be less than one for the model to be stable, and thus trace­

able. If the total feedback is greater than one in a linear model, it will always 

be greater than one. Thus any deviation from the equilibrium point is ampli­

fied to eternity.

This limitation need not be the case in a nonlinear model. Here the force 

of feedback can be strong at times and weak at other times. The model can be 

globally stable and traceable, behaving like a limit cycle.

3.2. L im it Cycles in Time Series 

A limit cycle in discrete time is different from a limit cycle in continuous time. 

Since the field of nonlinear difference equations is still in its infancy, Howell 

Tong (1990, 49-50) provides a set of working definitions.

For each integer t >0, let

X, = f(X,_l),X0 e R n, (3 -1 )

where /  is a vector valued function. Let f U) denote the jm iteration of /, that is

j
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( 3 - 2 )

For example, X2 =f{ Xt )=/ (Ao W 1  *o)) -
j of them

The attractor set for /  is a  compact set A such that the basin

B = (3 -3)

has positive Lebesgue measure, where ll-ll is the Euclidean norm, and A is 

minimal with respect to this property.

A limit cycle is an attractor set A with T points {Xx,...,XT} such that

These definitions of Tong’s have some implications. At one extreme, 

where T=l, the attractor set A is simply a limit point (equilibrium point) in ­

stead of a limit cycle. At the other extreme where T approaches infinity, the set 

A is a  strange (or chaotic) attractor, in which case the value of the jm iteration 

of f  has a sensitive dependence on initial conditions10. If T is in between the 

two extremes, the set A is then a limit cycle set. For example, many computer 

generated pseudo random num ber series are limit cycle series with a very 

large but finite T. This is one extreme case of a limit cycle that looks random.

3.3. L im it Cycles via Threshold  Models 

Although there are a wide variety of nonlinear time series models, only a few 

classes have been developed in the literature that are capable of producing 

limit cycles. The class of threshold autoregressive (TAR) models introduced by 

Tong (1983, 1990) is one. Another potential candidate is the class of Markov- 

switching (MS) models used extensively since Hamilton (1989). Both types of

10 Medio (1992,46) defined a map f  :U->U, UeRn, which has a sensitive dependence 
on initial conditions if 38>0 s.t. VxeU, and V neighborhood Nx, 3yeNx, and j>0 s.t. If"(.v)- 
r (y )  I >8.

X,+l = /(* ,),/ = !..7 - 1, and f (XT)=Xx. ( 3 - 4 )

1
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models are in essence piecewise linear models. The latter type, however, needs 

modifications to create limit cycles.

Tong’s two-regime TAR model has the following form:

Y,=ia0+ f la X ^  + $ )) ( l - r ( i i - r ,^ ) )+ { fa  + i l piYl_i + ej2>)I<n-Yl_ll) , (3 -5)
r=l 1=1

Y <n,'~d , n is the threshold parameter, d is the delay
^ > 7 7

parameter, and etu), i= 1,2 are w'hite noises. The choice of r\ and d can be deter­

mined from a grid search for the pair that gives the minimum sum of square 

errors.

If the indicator function I(-) is replaced by a continuous non­

decreasing function g( ), the result is a smooth threshold autoregressive 

(STAR) model. There are a num ber of candidates for the function g(•): logistic 

and semi-normal forms are the two most commonly used21.

In Tong's application of TAR to both the Canadian Lynx and the sunspot 

numbers, he produced coefficients that exhibit robust limit cycle phenomena 

in simulations. The key ingredient for the  success is the flip-flop nature of the 

model structures.

For example, in the sunspots model (Tong 1990, 425), the two equations 

after expanding (3-5) to the equivalent forms are

Yt =1.89+0.86Yt_1+0.08Yt_2-0.32Yt_3+0.16Yt̂ -0.21 Yt.5-0  Y^+0.19Yt.r 0.2 8Yt̂

+0.2 Y^+O.1 Y,.10+et( 1' if Yt̂ < 11.93, (3-6)

=4.53+1.41 YM-0.78Yt.2+et,2) if Y* > 11.93,

where Yt=2{(l+Xt)12 -1}, X, is the  annual average of daily observations of the 

sunspots 1700 to 1979, and et<0 are white noises.

11 Terasvirta and Anderson (1993) contrasted logistic and semi-normal functional 
forms in a univariate STAR model.

J

w here/(7 j-!;_ „ )= { ?
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Table 1 C haracteristics of the  sunspots model
Regime Dominant Eigenvalue Modulus Equilibrium

1 0.832 ± 0.484i 0.962 8.59
2 0.705 ± 0.532i 0.883 12.24

Since the modulus of the imaginary roots of both equations in Table 1 

are less than 1, both equations are stationary and oscillatory. Depending on 

the initial conditions, the skeleton of the model has 3 stable convergence 

paths. It either converges to one of the two stationary equilibrium points or it 

will oscillate for ever in a stable limit cycle.

The reason that the series can converge to a limit cycle is due to the 

imaginary roots of the two equations. Suppose the series starts out oscillating 

in the first regime and the oscillation is large enough to have one of its lags 

greater than the threshold, then the governance of the series will switch to 

the second regime after some lags. The same is true in the second regime. Each 

regime counteracts the damping effect of the other regime. The contradictory 

process generates a stable limit cycle.

In the Canadian Lynx example (Tong 1990, 387), the two equations are 

Y, =0.546+1.032Yt.r 0.173Yt.2+0.171Yt_3-0.431 Yt̂ +0.332Yt.s

-0.284Yt_6+0.21 Ŷ t+e,' 11 if Yt.2 <3.116, (3 -7 )

=2.632+1,492Yt.1-1.324Yt.2+e,(21 if Yt.2 >3.116.

w here Y, is the log10 of annual Lynx trappings in the Hudson bay from 1821 to

1934.

T able 2 C haracteristics of the  Lynx model
Regime Dominant Eigenvalue Modulus Equilibrium

1 0.887 ± 0.000i 0.887 3.82
2 0.746 ± 0.876i 1.151 NS12

12 NS stands for non-stationary.

t
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Table 2 implies that the first regime is stationary , while the second re ­

gime is explosive and oscillatory. In contrast to the sunspots model, the skele­

ton of this model converges only to a limit cycle. With any starting value, a 

simulation of the series will alternate between the stationary and the explosive 

regimes. Since the threshold of 3.116 is less than the long run equilibrium 

value of the stationary regime, the series will pass the threshold and switch to 

the explosive regime in due time. The series will not stay in the explosive re ­

gime for long, however. Once the explosive oscillation dips below the thresh - 

old, the regime is switched back to the stationary one after two periods.

Inspired by Tong’s threshold idea, Potter (1993; 1994, 323) applied a TAR 

model to the U.S. GNP data. In his model the two equations1-* are

Yt =-0.808+0.516Yt.r 0.946Yt.2+0.352Yt.5+et< 11 if Yt.2<0,
(3 -8 )

=o.5i7+o.299Yt.l+o.i89Yt.2-o.i43Yt.5+et,2> if y,.2 >0,

where Y, =100(l-L)log(GNPt), from 1947ql to 1990q4.

Table 3 C haracteristics of th e  GNP m odel
Regime Dominant Eigen value Modulus Equilibrium

1 0.334 ± 1.047i 1.099 NS
2 0.663 ± 0.334i 0.743 0.789

Contrary to Tong’s Lynx model (3-7), the threshold in Potter’s GNP

model is less than the equilibrium of the second regime, so there are two con - 

vergence paths for the skeleton in this model. Depending on the initial condi­

tion, the model either converges to the long run equilibrium of the second re ­

gime, or it converges to a stable limit cycle (with periodicity equals to 4, based 

on a simulation of (3-8)).

13 There seems to be a misprint in Potter (1994, 323). The coefficients for the 5“ 
lag in both regimes have the wrong signs. Potter (1993, table 3, 25) has the right signs.
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3.4. T h re sh o ld  versus M arkov-Sw itch ing  

In contrast to TAR models, MS models in the literature normally are not capa­

ble of generating limit cycles. The reason is that the states are exogenous to 

the system, and the ir transition probabilities are fixed. Laroque and Rabault’s 

1995 model is perhaps one exception. There they used a filter similar to that of 

Hamilton’s, and yet the transition probabilities are governed by a process 

more like that of a  TAR model.

One possibility of generating a limit cycle in an MS model is to en - 

dogenize the transition probabilities. Generalization of MS models to incorpo­

rate time-varying transition probabilities (TVTP) has been studied by Francis 

Diebold, Joon-Haeng Lee, and Gretchen Weinbach (1994), and by Filardo (1994). 

The next step is to  make the TVTP a function of lagged endogenous variables. 

Once this is done, the line between a TAR model and an MS model becomes 

blurred.

Although in both TAR and MS models there are at least two regimes, the 

approaches differ in their treatm ent of the regimes. Tong explicitly views the 

threshold and the regimes as a linearization of a nonlinear process. Each re ­

gime is seen as a local approximation of a nonlinear function at a point. An MS 

model, by contrast, makes no reference to the cause of regime switching. It is 

exogenous to the model.

The general model that I develop below can encompass both a TAR model 

and an MS model as special cases. It endogenizes the regime switching as in a 

threshold model. However, it only tries to infer the probability of being in a 

particular regime through filtering as in a  Markov-switching model. This 

combined model can be called an autoswitching Markov or a self-switching 

Markov (SSM) model — a name inspired by Tong’s self excited threshold p rin ­

ciple.

J
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This combination enriches the theoretical content of an MS model. The 

regimes are no longer governed by a hidden force. The approach provides a 

richer environment to study factors that cause a regime to switch.

This combination also enriches the statistical content of a threshold 

model. It becomes possible to estimate the threshold value and delay factor 

jointly, without an auxiliary' grid search.

I will now define the SSM model formally, and show how it can be con - 

strained to represent either a TAR or an MS model. The related estimation 

strategies will also be noted.

3.5. A Se lf-Sw itch ing  M arkov (SSM) M odel

3.5.1. The P re lim in a rie s  

An n-dimentional multi-state (or regime) vector autoregressive model with r- 

lags can be defined by the following equation24 if the states are observable:

Y> -  Cf, +<I> L «<J) Yt-l + Y-2 + ’ " + ®rAS;.r)Y-r  + 5  ( 3" 9)

w here

Y, is an nxl vector of endogenous variables,

Cc. is an nxl vector of state dependent constants, where

S( is a state indicator variable taken on values 0 o r 1, and

<t>h /(5. h) is an nxn m atrix indexed by lag and by an indicator function

/(S*,/i), where

I(S’,h) takes on values 0, or 1, based on the value of St* and h, h=l,...,r,

and

24 In the notations that follow, unless otherwise noted, k is the number of states; r 
is the number of lags; indices i, j are from 1 to k; h is from 1 to n and an '*’ next to a vari - 
able is a binary state variable.

)
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AS

EtS. -N (0 ,Q t), (3-10)

where

Q, =  Q0 if Sr' =0, otherwise Q( =  Q,.

Because each element in the state vector {5r*, S^} can have two

possible values, we can specify the indicator function I(S’,h) of (3-9) in a va­

riety of ways. At one extreme, we can define I{S’,h)= 0, for all h. In which case,

the AR coefficients stay the same in both regimes as in Hamilton’s 1989 model. 

However, we can relax the assumption of uniformity of AR coefficients across 

states and set I(S*,h)=S’ for all h, as suggested by Robert McCulloch and Tsay

(1994). In this case, the dynamic of the system (3-9) is determined solely by the 

current state. A TAR model such as Potter’s 1994 model is also of this type. At 

the other extreme, we can define the indicator function I(S’ so that

there are 2r~l possible combinations of AR coefficients and constants. The dy ­

namics in (3-9) then become more complex. Similarly, the variance- 

covariance m atrix £2, in (3-10), can either be free to differ between two states, 

or to be constrained.

Table 4 Binary-state to K-state correspondence
S, S’, sv,  ... s-w
1 0 0 0 0
2 1 0  0 0
3 0 1 0 0

k/ 2 1 1  1 0
l+k/2 0 0 0 1

k 1 1 1 1

To simplify notation, I will define a new state variable St based on S,\ 

Suppose I(S' ,h)=S',_h. then the indicator function equals the value of the state at

i
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time t-h. In this case, the value of St based on St' is defined according to Table 

4. As a consequence, not all transition probabilities are positive.

Although there are multiple states in S,, there can only be one or two 

long-run equilibria. If both regimes are stationary, their long-run equilibria 

are:

= ( / - « »  - * 2 , --------<Dr, ) ' lq ,  i=0,l. (3 -11)

If one of the two regimes is non-stationary (let it be regime 1), then at 

least one modulus of the eigenvalues of the following matrix (see Hamilton 

1994, eq. 10.1.10)

F =

fd >  d>LI 2.1 $• - • r—1.1 <l> 1

/  0 .. .  0 0

0 / . . .  0 0

1 o 
•

Q 
•

. . .  1 0 .

(3-12)

will be greater than one.

3.5.2. The Regimes and  T heir T ransitions 

When the states are not observable, we can weight (3-9) by the prob­

ability of each state’s occurrence and sum over all k-state probabilities, i.e.,

i ; = Z > y( r * . + * ,./)- <3-i3)

w here

p Jt is the expected probability for St = j,

;"=0 if j is even, and j ‘= 1 if j is odd,

X, (3-14)

and the system of the autoregressive coefficients

^1  ~  ^ 5 ,’ = 0 ’ ^ >L/(S;’. l =0.1)’ ^ >2 J(5 ; '. ,= 0 .2 ) , “ ' ,< ^>r . / ( j ; ^ = 0 . r ) )  > '  ‘ ’

(3-15)
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The density of Y, conditioned on S, is then 

f{Yt \S ,= j ,X t)

= {2it)~n l  I Cl*. I1 2 ex p [(- l/2)(Yt - TyXf) 'C l ^ Y , - T }Xt )]' (3 ‘ *6)

The marginal density, or the likelihood of an observation is

( 3 - w )

The different specifications for the weighing variable pj distinguish

the various multi-state models, such as the TAR, STAR, MS, or SSM models.

In a TAR model,

p /= /(r j- i;_ rf) ,j= l,2 , (3 -1 8 )

where

n is the threshold value,

d is the delay factor, and the  indicator function 

/(77 — Yt_d) takes on value of 0 or 1.

In a STAR model,

Pj,=g{n-Y,_d),\= h2,  (3 -1 9 )

where

g (q - ^ _ Je [0 ,l] , is a continuous non-decreasing function.

In an MS model,

A '= X ‘, , P V . ' t>1’ (3 -2 0 )

is the projected probability of S,=j given the information at time t-1, where

p ‘1 = p (S ,= j\S , . l =i) (3 -2 1 )

is a constant of the state transition probability, and

pU = P(Y^,St_t = / 1 X,.,) !f{Yt_x I X,_,), t>2, (3- 22)

i
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is the filtered probability of S ,.^  given the information at time t-1. In (3-22)

P iY ^ S , . ,  = ii X,_l ) = f{Y,_l I 5,_, =i,Xt_l)p„l (3 -23)

is the joint density, and  the likelihood f(Y,_x I X,_t ) is defined in (3-17). At the 

time t=l, p{=pJ, a constant to be defined later.

In an SSM model,

£ /=  ’ (3 -24)

where is the same as (3-22) in an MS model, but the state transition prob­

ability

p? = p(S,=j\S,_l =i,Xt) 

is an element in the kxk state transition probability matrix

(3 -25)

P ,=

(*00 i - Pr 0 0 0 0
0 0 1 - p ? 1 p ," : :

I I 0 0 •
\ * • * 0 0
0 0 0 0 1- a " r,*11Pt
,,o l-p,*00 0 0

1 •

0 0
0 0 i - p ;u

*11 
Pi : :

I : 0 0
* * • * 0 0
0 0 0 0 1 - P;u Pt .

(3 -26)

where p t'u e pt*. The la tter is a first order Markov state transition probability 

matrix, i.e.,

P, =
•00Pt"  1 -p ,

\ - p ,
11 p,

•00r
11 (3-27)

w here

P?  = gi(Pi’X ,A )  - *=0* I- (3 -28 )

w here

j
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g,( ) is a function that maps R2m*1 to [0,1], where m=nr+l.

5, is a scaling factor for state i.

(3 -29)

is a lxm row vector15, where

tj, is a constant,

ftj, is a Ixn row vector so that the product

(3 -30 )

is a scalar.

There are many functional forms for g,( ) that one can use to satisfy the 

mapping. Logit is one, and semi-normal is another. In a logit mapping, g,( ) 

can be defined as

Hamilton (1989) se tp '',;= l to k, to the ergodic probabilities17 implied by the

15 A double subscript for p identifies the regime and the lag, whereas a single 
subscript identifies only the regime.

16 Simulations with both mappings have shown that the semi-normal mapping is 
less likely to have an explosive trajectory when faced with a short sequence of strong 
shocks while one regime is not stationary. This is partly due to the symmetry of the map­
ping. Also there is a focal point (when AXr=0) for each regime for which (3-32) is one (pr'" 
=1). The combination of these two factors constraints the behavior of the model. The prob­
ability of staying in an explosive regime diminishes the farther is the series deviates 
from the focal point.

17 Since (3-26) is assumed to be irreducible, and all eigenvalues of (3-26) except 
one are inside the unit circle, (3-26) represents an ergodic Markov chain. The ergodic 
initial state probability vector is then the normalized eigenvector of (3-26) associated 
with the unit eigenvalue (see Hamilton 1994, 681).

(3 -31 )

In a semi-normal mapping, g,( ) can be defined as

(3 -32 )

In either case, only # or 5, is identified, not both16.

3.5.3. The In itia l S tates

i
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transition matrix (3-26). It is possible in his case to do so. for the matrix is a 

matrix of constants without time subscript. When state transition probabilities 

are time-varying, however, the ergodic state transition probabilities for the 

whole sample are not well defined.

In a 2-state model without lags, Diebold, Lee, and Weinbach (1994) pro­

posed treating pJ as an additional param eter to estimate. When there are lags, 

as in (3-9), there may be as many as 2r*1-l  independent initial state probabili­

ties (as defined in Table 4). It is not practical to estimate so many parameters.

An alternative approach is to use an iterative process. For example, let

where = j  I 1̂ .,...^) is the full sample smoothed inference of the state 

probabilities (see Hamilton 1994, 694) based on the initial param eter vector, 

and estimate the model conditioned on this initial set of values. Next, based on 

the new param eter vector, repeat (3-33) and re-estimate the model. Repeat the 

process until it converges.

The log likelihood of the model is then simply the summation of the log 

of (3-17) from t=l to T, with a special case for the initial state probability at t= l:

To fully appreciate the recursive nature of an SSM model, I have derived the 

gradient o f the model in what follows. To make clear the dependency of the 

likelihood on the model parameters, first I define the super param eter set

pJ=PiSl = j \V T,...y i), (3-33)

log /< Kr,.. i k„, .. )= log £ ' ,  /(>; i s, = y.jgp' +
(3-34)

3 .5 .4 . T he G radient

0 —fTi, ..., r^, £2q> Qii fto» Pi> ô» Si}, (3-35)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

-14

where the subset { r ^ , r \ J  is from the structural equation (3-15), or (3-9), the 

subset f a 0, is from the variance-covariance matrix (3-10), and the subset 

(Po, Pi. So, 8J  is from the transition equations (3-29) and (3-28).

Given the definition of the density of an observation (3-17), the log 

likelihood of the t* observation, t > 1, conditioned on the past observations and

the parameter set 0  is

L, = iog/(rf I x „ Q )  = log £ ‘=l/ ( ^ 1 $ = j * x „ e w s ,  =y i *,,©), (3-36)

w here

t \s ,  = j \ x „ & ) = p ‘, = X „ p “ri-> <3‘ 37>

as is in (3-24).

The recursion is due to the dependency of P(S, = j \ X t,@) on 

f(Y,_x I X,_t,0 ) in view of (3-22). Since the density of each observation is recu r­

sively defined, the gradient of the model param eters with respect to the likeli - 

hood function is also recursive in nature. This result can be shown in the fol­

lowing.

Let y be an active element in the param eter set, i.e.ye0. (Not all ele­

ments in this set are distinct. For instance, most of the elements in the subset 

{T!,..., r k} could be the same, especially in Hamilton’s model (3-61).) The partial 

derivative of the log likelihood of the tm observation with respect to y  is

§ )  = ( £ ‘, , hW- *! v Sr + E L / (  V r ,  i x, >:, (3-38)

where the short-hand notation

n r / )  = A r l \ s l = j , x „ e ) .  (3-3 9)

Of course, some of the partial derivatives are zero. Evaluating thedf(Y,J)/dy  is 

straight forward in view of (3-16). Complications arise for the*?/*' I d y . From

i

i
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(3-22) and (3-24), we see that

*r '  *  ' ( 1

w here

p'f is an element of (3-26), defined by (3-28),

/*_, = / >(5,_1 = /l X t,Q) is the filtered im state probability from (3-22), and

f{Y,_t) = y \ * f ( Y tt ,)^1, is the unconditional density form (3-17).j — 1

The last expression in (3-40) is a sum of 4 multiplicative factors, three of 

which are the  recursion of the derivative at time t-1. At time t= l, however, 

(3-40) equals to zero, because the initial state probabilities are  assumed to be 

independent from the model parameters. When (3-40) equals to zero, the sec­

ond summations in (3-38) are all zeros as well.

3 .5 .5 . T he E stim ation

a) Finding  a Starting  Parameter V ector  

Unlike a linear model, the starting param eter vector plays a crucial role in es­

timation of an  SSM model. One reason is that the likelihood is defined only in a 

subset of the  param eter space. For example, if a  regime has only one data 

point, the variance of that regime becomes zero and the log likelihood explodes 

to infinity. The model is also ill-defined when both regimes are non- 

stationary. For these reasons, the starting param eter vector should not be ar - 

bitrary. I have developed the following algorithm to find a starting parameter 

vector:

1. Fit a single set of AR coefficients using OLS

2. Create a vector with only binary values based on the  signs of the OLS 

residuals

J
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3. Regress this new vector to generate a set of linear probability coeffi­

cients and use it as the starting parameter values for the logit transi­

tion probability equation

4. Group sample observations into two sub-groups based on the signs of 

the OLS residuals

5. Regress each sub-group separately to generate the AR coefficients 

for the two regimes.

This approach works well for the logistic mapping of the transition 

probabilities, for the linear probability coefficients are consistent estimators 

of the true probabilities. The same is not true for the semi-normal mapping. 

Only ad-hoc methods seems to exist for creating vectors of transition coeffi - 

cients. One method is to use the two AR coefficients as the transition coeffi - 

cients. These can lead to undefined likelihoods, however. To ensure the con - 

sistency between the focal point of the initial coefficients in the transition 

equation and the long-run equilibrium of the initial AR coefficients from 

(3-11), at least for the stationary regimes, I opted to initialize

ilI=-H,(p1.1+0,.2+...+01.r), (3-41)

so that A*r=0 and p r’u=l in (3-32), whenever Yrt=n„ h=l to r.

b) Finding M ultip le  Local Maxima

The reason that the starting param eter vector plays a crucial role in finding 

the global maximum of an SSM model is that in a nonlinear model of this type, 

there might be multiple local maxima as well as saddle points in the likelihood 

surface. The algorithm above leads only to a local maximum. To find the global 

maximum, we need to find as many local maxima as possible.

Each local maximum has a domain in the param eter space for which, 

starting from any points inside the domain, a hill-climbing algorithm, such as 

the quasi-Newton algorithm, will find the local maximum eventually. However,

J
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if one stans from a point outside the domain of a local maximum, convergence 

is not assured. Thus, to find as many local maxima as possible, we need addi - 

tional strategies.

In the following, I will introduce 3 strategies for finding a point in the 

domain of a local maximum. The first strategy is a grid search algorithm that 

looks for promising starting param eter values from one local maximum to a n ­

other. In practice, however, only a few alternative domains can be identified 

by the grid search algorithm, due to the complexity of the likelihood surface. 

This drawback leads to the need for a second strategy, an algorithm that gen - 

erates a set of starting param eter vectors randomly. A simple, and yet valuable 

third strategy is to use one local maximum parameter vector as the starting 

vector of a new estimation, except that the parameters in the transition p rob ­

ability equations are switched. Since the third strategy is straight forward, I 

will only explain the first two in greater detail.

i)  Grid-Search fo r  S tarting  Vectors  

If one designs a grid in the param eter space and tries to use all the grid points 

as the starting values in a quasi-Newton estimation process, the computational 

burden becomes prohibitive. A grid search for all points that have a higher 

likelihood value than their neighboring points is one alternative strategy to 

narrow down the set of starting values. The finer the grid, the less the chance 

of missing the domain of a local maximum. However, the finer the grid, the 

more chance those starting values will lead to the same set of local maxima.

The computational trade-off is still high. Thus, finding a manageable set of 

starting values is a practical challenge for building a successful SSM model.

The algorithm developed here is a peak-to-peak search algorithm. It 

searches from one local maximum to the next, without estimating from all the 

grid points in between. The key is to identify a point that is outside the domain
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of the current local maximum. Using this algorithm, one can quickly identify 

the starting parameter vector for a new local maximum without a high com­

putational burden. The trade-off is that one cannot be guaranteed that the 

global maximum is among the local maxima found.

The algorithm is the following:

First we design a param eter grid with, say, 10 points for each parameter. 

(Figure 1 represents an example of a model with 5 local maxima and only two 

parameters.) Next, we estimate a model from any reasonable set of starting 

values (such as those given by point “A” in Figure 1). Once the local maximum 

is found (point “B”), we add the estimated param eter values to the param eter 

grid. Using the local maximum just found as the starting point, say the k* point 

on the grid, we test for the likelihood value on points along the grid lines for 

each parameter. If we find a grid point, say, the point (j*k) on the grid that 

has a likelihood value higher than points j-1 and j+1 for the im param eter, 

then we have found a point that is outside the domain of the current local 

maximum. It could be a point that is closer to the next local maximum (points 1 

and 1’ in Figure 1). We set the ifc parameter value to the jm value on the grid 

and repeat the process for the next parameter.

Since we are incorporating local maxima into our grid, any peak d iffer­

ent from the local maxima already on the grid represents a point within the 

domain of a new local maximum. If we start our estimation from such a point, 

we should reach the new local maximum. Further search along the grid for 

points like 2, 3, and 4, not only helps reduce the time it takes to estimate the 

model, but also eliminates false starts from such points as 5 and 5’ in Figure 1. 

Those points lie within the domain of the local maximum found previously.

By searching on the grid for the highest point within the domain of a 

local maximum, we can find a point such as point 7 in Figure 1 that is outside

J
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the domain of any local maximum we have already found. We can repeat the 

process until any highest point found on the grid is a local maximum found 

earlier.

Grid search o f local maxima.Figure 1

i i )  Random Generation o f  S tarting  Vectors 

Since the likelihood is only defined on a subset of points in the param eter 

space, random  starting vectors within bounds often lead to undefined likeli­

hood. To generate starting param eter vector randomly and efficiently, we need 

to generate within the subset as much as possible. Since the algorithm for 

“Finding a Starting Parameter Vector” on page 45 was not a recursive algo­

rithm, it can be repeated with each random subset of observations.
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An experiment using the yearly Canadian Lynx trapping series is very 

illuminating. The likelihood is defined on only 50 out of 20,000 random pa­

ram eter vectors. The reason for this low number is that although each pa­

ram eter is generated within its reasonable range, the combination of all the 

parameters leads to an undefined likelihood. Instead, when random subsets of 

observations were used to generate 100 starting param eter vectors, only a few 

leads to undefined likelihoods, and yet many distinct local maxima were found.

c) P aram eter  T ra n s fo rm a tio n

In actual estimation it is necessary to ensure that param eter values do not 

wander outside their proper domain. In particular, we need to ensure that the 

variance-covariance matrix in the autoregressive equation is positive definite. 

The same holds true for the scaling factors in the transition probability equa­

tion when they are free parameters. To this end, Cholesky decomposition is 

used for the variance-covariance matrix, and exponential transform ation is 

used for the scaling factor during estimation.

3.5.6. The E valuation 

For a given model, when there are multiple local maxima, the best model esti - 

mate should be the one that has the highest likelihood value. However, due to 

small sample size, the global maximum in a sub-sample might not be the global 

maximum in a  larger sample. Thus there are alternative criteria for selecting 

the best estimate of a model.

a) Post-Sample Prediction Error

One selection criterion for the best model estimate is to based the selection on 

the forecasting power of the estimates. The global maximum that has the best 

in-sample fit might not be the one that gives the minimum post-sample p re ­

diction error.
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i) Long Horizon Forecast 

Suppose we are interested in forecasting t-step-ahead (t > r, the number of

lags) at time T, then the expected YT.-, at time T conditioned on the Sr_.=j is

Y ^ it =E(Yt+t \St+t = j ,X T̂ )  = r yXr+Tir, (3-42)

where r, is from (3-15) with and

^r+nr = ̂ r+r-icr»̂ r+T-ar’' ' r̂+r-nr 1 » (3-43)

is known from the forecast for time T+x-1 of the unconditional expected Yr+r.ur.

The unconditional expected Yr+ttr is found by summing over the condi - 

tional Y/",t , weighted by the projected state probabilities, i.e.,

= (3-44)

w here

Pt+tO- = Pt+x\T ' Pt+t-1\T > (

and where

Pr+ro- *s *** element of (3-26), defined by (3-28), and 

Pt+t-ut *s t îe filtered probability of S, = j forecasted for time T+t-1. The 

unconditional density forecast is

/(^r+ttr  ̂-^r+tir) =  ̂*̂ r+ r = j^r+xtr^PT+rtr > ( 3-46)

w here

/(^r+rir I ST+r = j ,X T+rtr) =
* . - - - - ,(3 -4 7 )

(2k ) n I LI., I1 exp[(—l / 2 )(^-+r0- -  TjXt^ v )'Q. ..(YT̂ T—YjXT̂ T)\

where j  '=0 if j is even, and ; '=1 if j is odd. From these quantities, we find the

filtered probability of S, = j forecasted for time T+t:

Pt+xw ~ f(^r+T\T  ̂ST+r = J'Xt+t\t)Pt+t\t * XT+Ttr)- (3-48)
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This process can be repeated to forecast t+ 1 steps ahead.

Suppose that a model is estimated with sample size T when the full sam ­

ple has T+h data points. Then the h-step mean post-sample prediction error in 

a univariate case (see Harvy 1990, 189) is

^ = £ E L 1( ij w - > V . , i e ) ! ( 3 -4 9 )

where the first subscript for £ is the forecast horizon, the second subscript is 

the number of forecasts made, and the third subscript is the data set used to es -

tim ate the parameter set ©. The forecast Yt+t[T is from (3-44), and Tr.r is an o b ­

served data point.

This test of the forecast performance might not be very informative 

when the forecast horizon h is large. The forecast YT+xU- might converge rap ­

idly to a single point. The power to detect the  change in regimes between d if­

ferent estimates is lost.

Experiences with various models show that if one regime of a model is 

nonstationary and the logistic mapping is used for the transition equation, 

then there exist a short sequence of shocks after time T for which the sim ula­

tion of the model can become nonstationary'. It is less likely, however, for the 

semi-normal mapping to experience the same explosive trajectory'.

i i )  S im ulated  Real T im e Forecast 

An alternative definition of the mean one-step post-sample prediction error is 

to simulate a real time forecast, and take the  average of the one-step-ahead 

forecast over horizon h, i.e.,

(3 -5 0 )

w here
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(3 -51 )

is derived using information up to time T+x-1, the same as the  in-sample ex­

pectation of (3-13), except for the change in time subscript.

Another selection criterion for the best model estimate is to select the estimate 

that is least influenced by the sample period. The influence can be m easured 

by a version of bootstrapping. In our case, we test the goodness of fit of each 

local maximum using a set of random sub-samples of the data  and record the 

likelihood values from such random sub-samples.

Given the recursive nature of the likelihood, the random  subsample 

cannot be generated by randomly selecting one observation at a time. Instead, 

I have developed an alternative procedure to generate a random  sub-sample.

Based on the ergodicity assumption, the bootstrap sample is derived by- 

organizing the original sample into a repeating data series, going from the Xth 

observation to the T01 and back. A data point in the bootstrap sample

so that the last r  observations and the first r  observations starting from the xm 

observation have the minimum Euclidean distance in the neighborhood of x=r. 

Once the bootstrap sample is created by repeating the new d a ta  series {Y„...,YT}, 

a sub-sample can be extracted by starting from a random poin t in the  boot­

strap sample and selecting consecutive observations of a given size. The ran - 

domness here is only in the sense of randomly selecting a slice of the data 

within the bootstrap sample. Since only" one point of the data  for every T-x data

b) B oo ts trap  L ike lihood

where x is the minimum index of x*, where x* is any point for w hich

EUjsE t. x*=r,...T-l,

(3 -52 )

(3 -5 3 )

(3 -5 4 )

J0
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points in the bootstrap sample is artificially connected, its influence on the 

overall likelihood should be minimal.

The log likelihood of (3-34) for a given vector of param eter values and 

using a random subsample of the bootstrap sample starting from data point a to 

a+d is

= (3-55)

w here

PJa=PiSa = j\Y aHi,..Ya) (3-56)

is the full-sample smoothed inference of the initial state at time a.

3.5 .7 . Nesting a TAR o r an  MS Model in an  SSM Model 

In a univariate case, the system of a 2-state SSM model with logistic mapping 

has the general form

Y t = ^ -0 " H * 0 ,y t  l Y  t - l + 0 O . y t. 2 Y  1 - 2 + -  • • 'H t, 0. y H . Y t - r + E , ' 11 i f  S r = Q ,

Y t= C l+4>  l,y t tY  ,-!+<}) !,y t 2 Y t.2+ .  .  . + 4 1  l.y w Y t-r+E t ' 21 if S | = l .

(3-57)
P t ° ° =  l + e > q 3 ( - 5 0 [T io+Po.yt_l Y  t- i + —+ P o ,y t<Y  1 >

P t U =  1 / }  l + e x p ( - 5 j  [T 1 i+ P i.y t j Y t - i + . - . + P i . y ^ Y t- r + P l ^ l. 12 t- l+ — + P l j ! t_r Z!-r] )  f »

where r  is the maximum lag used, and Z, is any exogenous variable used, and pt“ 

is the time-varying transition probability from state i to state i.

a) Nesting a TAR Model in an SSM Model

Given (3-57), a TAR model can be represented as a constrained SSM model.

When g X )  in (3-31) becomes an indicator function, the  state transition prob­

ability matrix (3-27) becomes a m atrix with columns of all zeros or all ones.

The summation in (3-24) for each p j , j= l to 2 becomes a binary variable, as in
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(3-18). For example, Potter’s 1994 TAR model with a threshold of 0 in (3-8) 

above, is equivalent to a 2-state SSM model after setting all coefficients in the 

transition equation to zero, except for Pb.y =-1, Pi.>t_2=l, and 8 equal to some large 

number, say, 104. More precisely

p °°= l/U +exp[-10* (0-Y,2)]},
(3 -58)

Ptn = 1 /U  +exp[-104 (0+Yt.2)]}, 

so that gA-) in (3-31) becomes an indicator function.

Tong’s TAR models can be represented in a similar fashion, e.g., 

pt°°= l/{ 1 +exp[-104 (n- Y^)]},
(3 -59)

Pt11=l/{l+exp[-104 H +Y w)]}. 

where n is the threshold, and d is the delay factor. However, an SSM model that

employs the semi-normal mapping cannot nest a TAR model, due to the sym ­

metry of the mapping. Neither can an SSM model nests a STAR model, due to 

the absent of filtering of state probabilities in a STAR model.

b) Nesting an MS Model in an SSM Model

A Markov-switching model also can be represent as a degenerate self­

switching model using either the logistic or the  semi-normal mapping. For ex­

ample, Hamilton’s 1989 model of the log difference of GNP is modeled as:

y, - f 1,' = 0iCyf_i -M,* )+ k (y ,-2 - / v  )
(3 -60 )

+fc(y,-3-AV ) +04(>V4 -  Mf- ) + €,

where the state S,'=0 or 1. The equation (3-60) can be written in an equivalent 

form using the notation of (3-9) with I(S’,h)=0 for all h:

y, = + <hy,~3 + + £n ( 3 -6 i)

where c, is one of the 32 combinations of u .  -04*- >
S' St t-l Sr-l Si-i t-4

depending on the value of the state vector {57, S,’.„ ..., S7-»l-
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All the coefficients in the state transition probability equations are 

constrained to be zero except for no and tj,. The scaling factors 8, are fixed to 1 

as well. The new logistic state transition probability equations are:

p°°=l/{l+exp(-n0)K
(3 -62 )

p n =l/{l+exp(-T|i)}.

It is no longer a self-switching model, for the  32x32 transition prob­

ability matrix in (3-26) is independent of time. Instead, it is a fixed transition 

probability- (FTP) model. One can thus test a self-switching model against the 

null hypothesis of a FTP model represented by equations (3-61) and (3-62), in 

particular the transition coefficients in (3-57)

3.5.8. T im e-V ary ing  T ra n s itio n  v e rsu s  Self-Sw itching 

The contributions made by both Diebold, Lee, and Weinbach (1994) and Filardo 

(1994) are in the formulation of the time-varying transition probabilities 

(TVTP). Instead of a fixed value for p ij, theirs vary with time, similar to (3-28).

For example, Filardo’s 1994 model is very similar to Hamilton’s above ex­

cept that Filardo included the Composite Leading Indicators (CLI) as an exoge­

nous regressor in the state transition probability functions. In these equa­

tions, the coefficients of the  first two lags of CLI, ( i=0,l, and h=l,2) are

free from constraints. In his model, the transition probability equations are:

pt°°=l/f l+exp(-[7i0+ftj^ jZ ^ + p ^ z d )} ,
(3 -63 )

p<ll= l/{  1+expHnx+p! ̂  ,^+Pi.z, _2z<-J)},

He thus makes the gt(-) and the transition probability matrix in (3-26) a func­

tion of time.

The difference between Diebold, Lee, and Weinbach’s and Filardo’s ap ­

proaches is that Diebold, Lee, and Weinbach used the full sample smoothed in - 

ference to define
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fr=P(Sl = j \ Y T,...Yl ), (3-64)

Instead of (3-24).

The only difference between an SSM model and a TVTP model is in the 

argument used for g,( ). In a TVTP model,

P;u = gi(Pi,Z n5i) , i= 0 , l  (3-65)

where is a vector of exogenous variables, where as in an SSM model, the 

vector Xt can include lagged endogenous variables as well as the exogenous 

variables.

This might seem to be a trivial difference, but the implication is pro­

found. Without endogenizing the transition probabilities, it is not possible to 

nest a TAR and an MS model into a unified SSM model, as I have shown earlier. 

Furthermore, it is not possible also to have endogenous, or limit cycles in the 

model without endogenizing the transition probabilities.

Another drawback of the TVTP model is the presence of exogenous vari - 

ables. They make forecasting difficult. Since neither Diebold, Lee, and Wein -

bach’s 1994 model nor Filardo’s 1994 model has a dynamic specification for the

exogenous variables used, forecasting requires extensions to both. In addition, 

in their model, Diebold, Lee, and Weinbach do not define the full sample 

smoothed inference of the state probability at time T+x, x>0, i.e., P(Sr..=jlYT..Y1).

A further extension, therefore, is needed for forecasting to be possible.

The situation is different for the SSM and MS models. Since no exoge­

nous variable is needed in either model, forecasting is m ore straight forward, 

as I have shown.

One implication of the SSM approach is that a shock to the system has 3 

channels to impact the future. The first channel is through the usual linear 

AR equations. The second channel is through the change in the filtered state 

probabilities, thus changes the weight that is given to each AR equation. The
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third channel is through the change in the transition probabilities, which 

also affects the weight given to each equation.

This third channel is unique for an SSM model. In a TVTP model, only a 

change in an exogenous variable can affect the transition probability; shocks 

to an endogenous variable have no impact.

3.6. C o n c lu s io n  

The advantage of an SSM model is that it provides a unified framew ork for 

modeling both an MS model and a TAR model. By constraining various pa­

rameters, the framework also can be used to test a variety of hypotheses. An 

SSM model is also superior to a  TVTP model; for it makes an endogenous cycle as 

well as forecasting possible.

In anticipation of the complexity of the SSM model, I have provided an 

algorithm for finding a set of estimation starting values, and a set of test s ta ­

tistics to evaluate the estimations. The next step is to apply the model, the algo­

rithm, and the test statistics to the real economic data.
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4. SSM Models of the U.S. Business Cycle

4.1. I n t r o d u c t io n

If there are different regimes in a business cycle, one im portant question to 

ask is to what extent is the regime endogenously determined. This question can 

be addressed using the SSM model developed in the previous section. By com­

paring an SSM model that incorporates endogenous information with a fixed 

transition probability (FTP) model or a time-varying transition probability 

(TVTP) model that ignores this information, we can gauge the relative im por­

tance of business cycle endogeneity.

4.2. SSM Models o f  the GDP Series

To make a direct comparison between an SSM model and Hamilton’s 1989 FTP 

Markov-switching model, I applied each model to 3 data sets. The results are 

reported in Table 5. For all models in the table, the AR equation (3-60) is used 

instead of (3-9). The transition equations for all models are

p t°°= l/)l+exp(-Tio- p Y  M ) J ,

(4-1)
P t U =  I  /  { 1  +exp(-T|! + p [  Y ,.l + Y , .2] ) } .

The model “FTP 1.1” is the replication of Hamilton’s original model. The 

results are not exactly the same as his except for the underlined digits. The d if ­

ferences are due to the different specification of the initial state probabilities 

P(Sl=j). Hamilton used the ergodic state probabilities as the initial state p rob­

abilities, whereas the initial state probabilities for all models in Table 5 are d e ­

rived using the iterative process described above on page 57. When the ergodic 

state probabilities are used, the results are identical to those of Michael
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Boldin’s reported in his Table 1 (1996, 39). The iterative process improved the 

mean log likelihood from -1.384 t o -1.377.

There are some noteworthy observations*5 to be drawn from Table 5.

The model “FTP1.2” is the second local maximum found using Hamilton’s 

model and data. Michael Boldin (1996) found that Hamilton’s 1989 estimation is 

sensitive to the date set used, as is evident from Table 5. Although the log like­

lihood of the reported Hamilton model is higher than the second local maxi - 

mum, the bootstrapped likelihood is lower, indicating a less robust estimate.

In Hamilton’s model, the dominant coefficients are the 3rd and 4th lag 

coefficients. In the other estimates, it is the coefficient of the first lag that 

dominates.

18 Notes on the symbols used in the table:
Except for <r, subscript next to a coefficient is the absolute value of the ratio of the 

estimate and its standard error. <r is not estimated directly. Instead, it is computed from 
the estimate of a. The subscript next to <r is the ratio of the estimate of c and the standard 
error of a.

An entry without a subscript is derived from other parameters and not estimated.
“P"’ is calculated from (4-1) using the sample mean, so that all models can be 

compared.
AIC is the Akaike’s Information Criterion. AIC= -2*MeanLogL+2*( number of pa- 

rameters)/T, where T = sample size.
LL = Mean Log Likelihood.
“BootL” is the mean bootstrapped log likelihood. It is based on a version of boot - 

strapping described in the section on “Bootstrap” on page 53.
“Std BtL” is the standard error of the bootstrap estimate. Both the mean and the 

standard error of the bootstrapped log likelihoods are based on 100 random extraction of 
50% sub-samples.

“SP°” is the average P(St=0fYT,...,Y1), t=l,...,T; i.e., the full sample smoothed reces - 
sion state probability.

“=Cyc°” is the approximate mean duration of state 0. Each duration of state 0 is the 
consecutive periods of length d in which

P(St=0IYT,...,Y,)>0.5, P(SuI=OIYt ,...,Y,)>0.5.....P(StKt=0IYT,...,Y1)>0.5.
“=Cyc” is the approximate mean cycle length. It is the average length of a full cycle 

from the start of state 0 back to state 0.
“Errpue,” is the mean square distance from the smoothed recession state probability 

to the National Bureau of Economic Research (NBER) reference cycle classification.
“Est” is the rank of the estimate out of the number of local maxima found in the

model.
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Table 5 32-State FTP versus SSM models o f GDP

Data29 195 lq l to 1984q4 1959q3 to 1997ql 1947ql to 1997ql

Model FTP1.1 SSM1 FTP FTP2 SSM2 FTP3 SSM3

P o -0.3731 c -0.o4d2.i -0.68 -1.2133.1 -0.71 8 3 .o -1.3923.3 -0.337i.6

P i 1.175,- 0.97696 0.93 0.8118.2 0.866u. 0.8259.s 0.908u.

0 i O 0 0 2 o . o 0.11 ̂ .o 0.28 0.2982.7 0.215,.3 0.416 5 .2 0 . 3 1 2 4 . 0

0 2 -0.071n « 0.0740.6 0.14 0.134j.i 0.015o.i 0.136i,5 0.0310.4

0 3 =0 *2S4,., -0.03 lo.3 -0.08 -O.032o.3 0.017o.i -O.OO80.0 0.0961.2

0 4 -0.212 7.2 -0.087oa -0.10 -O.022o.2 0.044o.4 -0.1842.6 -0.1522.o

h o 1.1502.2 -2.296!.6 -0.15 -1.3 390.9 -4 .OO3.0 -13.b8ao -5.0212.9

P -3.0522.i -2.6403.o -3. 9713.i

hi 2.2095.2 -0.4b 1q.5 2.48 3.54248 0.579o.t 3.6636.o -0.928i.!
a2 0.578i2. 0.730J 2. 0.70 0.41b i3 0.393i5. 0.582i8. O.b /b i8
po° 0.759 0.011 0.208 0.003 0.000 0.000

PU 0.901 0.982 0.9 0.972 0.987 0.975 0.994

AIC 2.890 2.851 2.9 2.302 2.251 2.566 2.546
LL -1 .3 7 7 -1 .349 -1.3 -1 .098 -1 .057 -1 .237 - 1 .2 2 2

LR/P-v- 0 7.12/0.0076 9.52/0.0020 5.91/0.0151
BootL -1.432 -1.357 -1.40 -1.064 -1.103 -1.246 -1.254
Std BtL 0.109 0.084 0.186 0.186 0.052 0.056
SP° 0.288 0.168 0.1 0.042 0.087 0.029 0.118
=Cyc° 5.5 2.5 1.25 1.3 1 1

=Cyc 17 17 27 13 24 10

0.070 0.105 0.1 0.106 0.076 0.157 0.107
Est 1/2 1/4 1/5 1/3 1/2 1/2

In every data  set, SSM has improved the likelihood. However, the boot­

29 Data sources: The first (GNP 1951ql to 1984q4 in 1982 dollars, 131 observa­
tions) is Hamilton 1989 model’s original data set. The second (GDP 1959q3 to 1997ql in 
1992 dollars, 146 observations) is from the St. Louis Federal Reserve’s Economic Database 
(FRED). The third (GDP 1947ql to 1997ql, 196 observations) is the same as the second 
after 1959q3. For data before that date, a subseries from FRED (GDP 1947ql to 1992ql in 
1987 dollars) is used. Since all data series are transformed using log-differences, only a 
few data points show discrepancies greater than 0.2% between the two basic series.

20 The likelihood ratio and the P-value are between the two adjacent columns of 
estimates.
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strap results shows that the improvement is not robust. In two out of three 

models, the SSM models have a lower bootstrap likelihood. What is of interest, 

however, is the improvement in the detection of the 1990-1991 recession in the 

SSM2 and SSM3 models, as shown in Figure 3 and Figure 4.

For all models in Table 5, the variance is constrained to be the same for 

both regimes. Otherwise, an estimation of the GDP series can lead to an unrea­

sonably high local likelihood. Since the log-difference GDP series do not show 

a pronounced conditional difference in variances, the estimation can con­

verge to a situation where only a few observations are fitted almost perfectly 

into one regime, thus exploding the likelihood-1.

94-C

c  . 94C

Figure 2

; 9 5 0 ' 96C ' 9 7 0  198:
a) 32- State FTP 1.1 Model

:

t 990
b) 3 2 -State SSM 1 Model 

Full-sample recession probabilities of the 32-state GDP models (1)

- 1 A TAR model, however, could accommodate two regimes of variances easily, for 
the number of observations classified in each regime is set by a fixed threshold.
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*94.0 ' 95C -96G ’ 9 7 0  i 98C * 9 9 0  20CC
a) 32-State FTP2 Model

" 1 9 * 0  19 5 0 ' 9 6 0  1 9 7 0  198C * 9 9 0  2 0 0 0
b) 32-State SSM2 Model

Figure 3 Full-sample recession probabilities of the 32-state GDP models (2)

“  194-0 1 9 5 0  1 9 5 0  1 9 7 0  ^980  1 9 9 0  2 0 0 0
a) 32-State FTP3 Model

C 194-0 1 9 5 0  1 9 6 0  1 9 7 0  1 9 8 0  1 9 9 0  200C
b) 32-State SSM3 Model

Figure 4 Full-sample recession probabilities of the 32-state GDP models (3) 

Since Hamilton’s model allows the two regimes to differ only in levels, 

not in their AR equations, it might be too restrictive for the purpose of cap-

i'
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turing the business cycle dynamics. In Table 6 , this restriction is relaxed. In - 

stead, an 8-state AR model in the form of (3-9) is used.

Here the indicator function associated with each lag AR coefficient is 

defined as I(S'y , and I(S',h)=S't.2 , h > l.  In other words, the intercept and 

AR coefficients have 8 combinations, based on the values of the state vector 

{5*r, S',.!, S',.21. Furthermore, an asymmetric AR dynamic is employed where one 

regime has 4 lags while the other has only 2.

This asymmetric and multi-state AR dynamic is suggested by Table 7, 

where FTP models based on (3-9) with symmetric lags are used for both re­

gimes (the data is the same as the GDP data 1947ql to 1997ql used in Table 5). 

There were multiple local maxima found for each model in Table 7, but only 

the highest from each model is used to calculate the Akaike’s Information Cri­

terion (AIC). In a 4-state model, the intercept follows the current state and all 

lags follow the state at time t-1, whereas in an 8-state model, all lags greater 

than 1 follow the state at time t-2. There are two low points for the AIC on lags 

2 and 4 in 2-state and 4-state models. In 8-state models, the AIC is lowest on lag

2. The two different low points for AIC suggest an asymmetric AR dynamic. The 

detection of the change in regime is best using 8 states with 2 lags, for it has a 

more reasonable cycle length of 32, and best matches the NBER reference cy ­

cle dates.

After experimenting with various specifications of the  transition equa­

tions, the best turned out to be a pair of equations where the  transition is a 

function of the sum of the last two observations. In particular,

P,°°=l/{ l+exp(-n0-P[ Y„+Y,.J) I
(-4-2)

ptu= 1 / { I +exp(-n i+P[ Y,.̂ Y,_2] )}.

In Table 6 , the difference between the FTP model and the two SSM mod­

els is that in the FTP model, p=0. The likelihood ratio test (LRT) shows that the

i
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SSM1 model is a substantial improv ement over the FTP model. Furthermore, the 

bootstrap likelihood is lower too, indicating a more robust model. The differ - 

ence between SSM1 and SSM2 in Table 6 is that in SSM2, tu=-ti0, similar to a 

STAR model. The low likelihood ratio between SSM1 and SSM2 shows that the 

regime switching can be modelled as a  symmetric switching model.

The new specification in Table 6 improved the FTP model only margin - 

ally. However, it improv es the SSM model substantially, as is evident from the 

improvement in both the AIC and the bootstrap likelihood values.

The improvement in the detection of the change in regime is evident in 

Figure 5, especially for the 1990-1991 recession. Overall, the beginning and 

the end of a recession period became more pronounced, and  more distinct.

In contrast to a linear AR model or an MS model, Table 6 shows that the 

feedback mechanism of the U.S. economy exists not only in the AR dynamics, 

but also in the regime switching dynamics. Although the feedback mechanism 

is not strong enough to sustain a limit cycle, it provided an additional mecha­

nism for the  persistence of the business cycle.

I
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Table 6 8-State asymmetric AR GDP models--

Data 1947ql to 1997ql

Model FTP SSM1 SSM2

Po NS -0.371 -0.402

111 0.740 0.880 0.874

Q, -1.3433.4 -1.0774.: -1.2344.9

$0.1 -0.249UI -0.6723.6 -0.7273 r

$0.2 -0.6 112.8 -0.7824.6 -0.8414.9

$0.3 0.672u4 -0.4732.9 -0.b283.2

$0.4 0.503j.2 0.0280.: -0.027o a

Cl 0.3283.8 0.5034.6 0.4914.6

$1.1 0.3665.o O.3 I64.2 03384.6

$1.2 0.1912.6 0.113:.4 0.100:,2

Tl0 -13.02o.o -3.2862.i -1-0842.6

Til 3.295s.9 -0.26bo.o [1.084]

P -3.4103.2 -I.8864.5

o2 0.b4918. 0.515:8. 0.505:8.
p°o 0.000 0.000 0.019

PU 0.964 0.993 0.981
AIC 2.563 2.513 2.515

L L -1 .2 2 6 -1.195 -1 .201
LR/P-v-5 11.79/0.0006 2.29/0.1302
BootL -1.226 -1.198 -1.194

Std BtL 0.052 0.055 0.057

SP° 0.034 0.125 0.168

ii n o o 1 2 2.5
=Cyc 22 14 19

Err,*** 0.155 0.102 0.106
Est 1/4 1/4 1/4

22 For an explanation of the symbols use in the table, see footnote 18 on page 42. 
Additionally, the entry for ti, for the SSM2 model with a set of a[\n around it indi -

cates that the entry' is constraint, other than the sign, to be the same as r|o-
23 In both likelihood ratios the alternative is the SSM1 model.
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Table 7 Symmetric AR FTP model exploration-’4

AR 2 states 4 states 8 states
Lags AIC Cyc Err AIC Cyc Err AIC Cyc Err

Length NBER Length NBER Length NBER

1 2.5682 4 .16 2.5731 3 24
2 2.5444 3 .17 2.5454 12 .16 2.5476 32
3 2.5676 3 .17 2.5571 5 .30 2.5494 20 .15
4 2.5285 4 .30 2.5260 3 .31 2.5542 17 .15
5 2.5871 6 .15 2.5506 4 .31 2.6052 2 .29
6 2.6079 5 .15 2.5679 3 .29 2.5891 2 .30

— .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -  -  n- - - - - - - - - - - - - - - - -  - - - - - - - - - -  - - - - - - - -

o
-

w
-

: !
o • a  A s  3 :

- 3 , 4  .

: ! :; : 1 |  1
c : r | . i'i f\ !i• ,1  4 * -

-  i i ' ! iA i :i i .
f* .rt ■

u j  i __ t♦ i h  A
- - •  *1 —  — --------- - -V-—

C 19*0  ' 95C i 9 6 0  ’ 9 7 0  ' 9 8 0  ' 9 9 0
a) 8-State FTP Model

,— r. t. —  -  -r -  ■ r— r **
- j . . j

1 : :i
l ' |  j | |  j; : 1-

0 
i 4 '

l  l ; ;
:

H  | ;  I  |  f : ?;•

c 1t i \ i  1.1 1  1  i
: f

i
:  iy \ 1 M  i I J j  J ! 1 -

!] i j -■ —TA,—i--- fa! i / . i i  . . . . il

-  *94-0 19 5 0  19 6 0  ’ 9 7 0  1980 '99C 2 0 0 0
b) 8-State SSMl Model

Figure 5 Full-sample recession probabilities of the 8-state GDP models

4.3. SSM M odels o f  the IP Series 

It is not surprising tha t SSM models above have improved upon the basic Ham­

ilton FTP model in view of Filardo’s TVTP model using exogenous information. 

The natural question to ask, then, is can one improve upon Filardo’s model

24 See footnote 18 on page 42 for an explanation of the column headings.
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using endogenous information. Since Filardo’s model is based on the index of 

Industrial Production (IP) and the Composite Leading Indicator (CLI) series, I 

will address this question using a data set covering the same period and using 

the same log-difference transformation. The results are reported in Table 8 .

For all models in the table, the AR equation (3-60) is used instead of (3-9). The 

transition equations are

p t°°= l / (  1 +exp(-[Tio+Pvt y,-1+Py, Y,-2+Po.z, jZt-i+Pozj 2Zt-2J )}.
(+3)

ptu = l/{  l+exp(-[nr pytiY ,-i—Pyt.zY rt+Pi )},

where Y, = 100(l-L)Log(IP), and Z, = 100(1-L)log( CU).

Since Yt is not variance-stationary, Filardo divided the pre-1960 sub- 

sample by the standard deviation of that sub-period. The same method is used 

for the data in Table 8.

The interpretation of the AR coefficients in Table 8 is thus problematic. 

We can, however, gauge the relative importance of the lagged values of the IP 

versus CLI series in regime switching. To this end, a third restricted model 

SSM2, is developed, where only the lagged IPs are entered into the transition 

function.

Given the possibility of multiple local maxima, Boldin (1996) suggests 

starting the restricted model using the unrestricted model’s param eter esti­

mates. Since the computational burden of the SSM1 model in Table 8 is very 

h ig h -5, I could not explore multiple local maxima, and then compare the global 

maximum found for each model within a reasonable time. Thus, in Table 8 , 

both the TVTP and SSM2 model estimations started from the local maximum 

found for the SSM1 model. The full sample smoothing of the recession prob-

-5 Due to a yet unresolved bug in my gradient programing code, when there are ex - 
ogenous series in the model, I could only use the numerical gradient method for both the 
TVTP and SSM1 models in Table 8. The SSM1 model took over 5 hours to converge.

£
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abilities for each model is illustrated in Figure 6.

Drops in likelihoods in Table 8 are significant for both restrictive mod­

els. This result implies that both the IP and CLI series contain significant addi - 

tional information regarding the regime shift, at least for the given local 

maximum.

i
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Table 8 TVTP versus SSM models of IP-0

Model TVTP SSM1 SSM2

Mo -0.5595.2 -0.5894.7 -0.092!.!

Pi 0.359s.o 0.4354.4 2.5259.5
<(>i 0.2374.7 0 .2605.0 0.422s.s

4>2 -0 .0 1  6q_2 0.0711.3 0.104i .9

03 0.053U2 0.02bo.6 0.085i.7
04 0.03 ̂ 08 0.029o.6 -0 .01  lo.2
*lo 1.025!.7 6.8772.8 4.8508.5

-1.036lo -1.343i.0
-3.296!., -6 . 1022.o

3-2922.3 1.4053.9

fc* 1.643i.g -0.233o.8
l̂l “ 9872.5 6.84232 2.6612.9

^ -1 3.261 i.s 9.1952.4

Pl .̂2 7.035!.6 2-993 i.3
C2 0.55929. 0 .3b43O. 0 .d243O._

0.734 0 ^9 9 “ 0934

P U 0.953 0.999 0.992
AIC 2.3980 2.3644 2.3837
L L -1 .175 -1 .154 -1 .171
L R /P-v-7 21.88/0.0000 18.33/0.0011
BootL -1.1737 -1.161 -1.177
Std BtL 0.046 0.038 0.056
SP° 0.391 0.426 0.036
=Cyc° 9 14 2
=Cvc 15 33 52

0.19 0.24 0.21

26 For an explanation of the symbols use in the table, see footnote 18 on page 42. 
The CLI data set is from University of Michigan archive through the Internet. It is

not the identical to Filardo’s data set; for I could not replicate his results exactly.
27 For both likelihood ratios, the alternative is the SSM1 model.
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a) TVTP model using only CLI in the  transition  equation
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g
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i !

94C ' 9 5 0 : 9 6 0 197 0 9 8 0 ■ 9 9 0
b) SSM1 model using both CLI and IP in th e  transition  equation

a -

c . 94-0 1 9 5 0  1 9 6 0  ' 9 7 0  ' 9 8 0  1 9 9 0
c) SSM2 model using only IP in the transition  equation

? Of'

Figure 6 Full-sample recession probabilities of the  IP models
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4.4. An SSM M odel o f  the U nem ploym ent Rate 

Although the self-switching models have been shown to be significant in both 

output series, no estimations so far lead to limit cycle trajectories in their fore­

casts or simulations. The U.S. unemployment rate series is different. It is 

known to be highly nonlinear. It offers us an opportunity to model the busi­

ness cycle as a limit cycle.

The U.S. unemployment rate series show signs of non-stationariety, as 

evident in the first panel of Figure 7. Until the current recovery, the rate 

tends to inch upward from one recession to the next. To achieve stationarity, I 

applied the first differencing to the rate series, as many authors have done 

(see, for example, Hansen 1997). Panel (b) of Figure 7 shows the rate series a f­

ter differencing.

3?

' 99C 7 7 7 ^1 980• 950 1960 1970
a) Unemployment rale

: 19*0 1950 I 9 6 0  1970 1980 ’ 990  2 000
b) Monthly changes in the unemployment rate

Figure 7 The U.S. unemployment rate and the monthly changes

To narrow down the range of choices for estimating an SSM model, I 

compared a series of 2-state symmetric FTP models with 2 to 20 lags to deter -

i
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mine the optimal lags in the AR structure-8. Mindful of Tong’s (1990, 289) 

warning against overparameterization based on the lowest AIC, I opted for a 

lag length of 12 (a one year lag comparable to the 4  lags used for the quarterly 

data). The AIC value increased after lag 15 and then  decreased drastically after 

that. Once the highest lag length is set, I compared another series of FTP mod­

els with asymmetric AR structures to determine the optimal lags for the second 

regime, while fixing the first AR regime to 12 lags. The lowest AIC for the sec­

ond regime is at lag 5.

After experimenting with various self-switching param eters using the 

semi-normal mapping, and applying the initialization (3-41), Table 9 repons 

the SSM model that seems to be the  best in terms of the AIC. The less interest­

ing AR coefficients are reponed in Table 10. In this model only the intercept 

and the coefficient for lag 5 in the transition equations are free, i.e.,:

p,00=exp(-[ri0+ft3Y t.s]2) ,
(4-4)

p,ll=exp(-[nl+p1Yrt]2).

Although there were 19 local maxima found with 50 random staning pa­

rameter values for the SSM model, the SSM1 and SSM2 estimates are the most 

interesting. To contrast the FTP and SSM models within the neighborhood of 

the same local maximum, the staning values for the two FTP model estimates 

were based on the SSM1 and SSM2 param eter values reponed in Table 9, re­

spectively.

The reason for employing the semi-normal mapping for the models in 

Table 9 is that the mapping is more stable in simulations, due to it’s symmetry', 

especially in 2-state models. This is why the models in Table 9 are 2-state mod­

els. In contrast, some shon series of strong shocks can send a model’s trajec-

28  The number of local maxima increased drastically in 4-state and 8-state mod­
els, making the selection more difficult.

JL
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tory based on the logistic mapping into explosive paths.

The possibility of explosive path using the logistic mapping seems to be 

a particular problem of SSM models. Since an FTP model has no self-switching 

component, an estim ated FTP model is unlikely to experience this problem. 

Neither should a TAR model with a fix threshold. In num erous simulations, I 

have found no explosive paths in either FTP or TAR models.

The differences betw een the two panels in Figure 8 seemed small. They 

represent the full-sample (1948.03 to 1997.06) recession probabilities of the 

SSM1 and FTP1 models. The small difference between the two panels is con­

firmed in Table 9. The recession probabilities are 4.9% and 6.6%, respectively. 

The one-step forecast seems to be indistinguishable between the two panels in 

Figure 9 as well.

The dramatic difference does occur, though, in the long-run forecast 

between the two panels in Figure 9. The SSM1 model has a cyclical pattern with 

periodicity around 20 month, whereas the FTP1 model converges to a straight 

line. Forecasting out 500 periods, starting from 1990.05, the SSM1 estimate re ­

vealed a limit cycle trajectory, as evident in Figure 10.

The mean post-sample prediction error of the SSM model is inferior to 

the FTP model in both the estimates reported in Table 9, at least for the local 

maximum found and the sample forecast period used.

The SSM2 estimate in Table 9 behaves very differently from the SSM1 

estimate. Whereas the full-sample recession probabilities from the SSM1 esti­

mate missed many recessions, including the 1991 recession in Figure 8, the 

SSM2 estimate missed many recoveries in Figure 11.

Although there  were many local maxima, the estimations generally fall 

into 4  categories, as shown in Table 11. Figure 8 of SSM1 estimate and Figure 11 

of SSM2 estimate represent the two w'ell behaved categories. The last two cate­

i
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gories have the highest number of local maxima, and are the most sensitive to 

the choice of the starting param eter values. The full-sample smoothing of the 

recession probabilities from these estim ates either show a very high fre­

quency of business cycles, or they show extremely small probability of reces­

sion. Of the latter type, two of the estim ates have unreasonably high likelihood 

values.

On the one hand, from Table 11, it seems that the probability of a ran ­

dom starting value leading to an estim ate with a limit cycle outcome, similar to 

SSM1, is fairly high, especially if we exclude the last two categories of esti­

mates. In fact, there were 13 different starting values converged to the same 

limit cycle estimate. On the other hand, based on the bootstrap likelihood, the 

SSM2 estimate seems to be a more robust estimate with a higher likelihood 

value.
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Table 9 2-state models of the changes in the U.S. unemployment rate-’9

SSM1 FTP1 SSM2 FTP2

Fo NS NS 0.081 0.163
Fi -0.020 -0.024 -0.036 0.071

no -0.024c.! 0.5244.3 -O.025o.3 0.18041
3.2173.x -0.7304.2

ni -0.0982.t 0.1223.3 0.10b2 8 0.13 / 3.3

Pi -0.297j 8 0.6523.i
O02 0.0765 5 0.1176.! 0.082,3. 0.080, g

Ol2 0.03228 0.03123. 0.01 92i. 0.0192i.
p 00 0.999 0.760 0.999 0.968

p u 0.990 0.985 0.989 0.981
AIC -0.3555 -0.3469 -0.351 -0.3418
L L 0.2284 0.2200 0.2262 0.2174
LR/P-v-30 8.299/0.0158 8.694/0.0129
BootL 0.245 0.240 0.248 0.265
Std BtL 0.068 0.071 0.065 0.076
SP° 0.049 0.066 0.383 0.407
=Cvc° 3 4 28 41
=Cvc 58 62 66 %
ErTnggi 0.134 0.113 0.204 0.217

^.se31 0.0232 0.0231 0.0236 0.0225

8̂6.1 0.0807 0.0697 0.0303 0.0252

29 For an explanation of the symbols use in the table, see footnote 18 on page 42.
Data source: Chilian Unemployment Rate (SA, %) 1948.01 to 1997.06 from St. 

Louis Fed’s FRED. The estimation used data from 1949.03 to 1990.04, a total of 494 data 
points. The first 12 data points were lost due to the lags used in the model. The data from 
1990.05 to 1997.06, a 15% of the sample was reserved for forecast comparison purpose. 

20 For both likelihood rations, the nulls are the FTP models.
31 î.!6ancl £S6 i are the mean one-step ahead forecast error and the long horizon 

forecast error, respectively, based on parameter estimation of data up to 1990.04.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Table 10 AR coefficients for the models in Table 9.

SSM1 FTP1 SSM2 FTP2

Q -0.016^8 -0 .0 2 0 ,.! -0 .0515.4 -0.0494.7

$0.1 0.03-4o.8 0.022o.5 -0.1973.5 -0.1953.i

$0.2 0.1353.4 0.1203.o -0.045o.8 -0 .0 b I0.9

$0.3 0.1062- 0.0852.i -0.103i.6 -0.1312.0

$0.4 0.1022.5 0.1042.6 0.056i.2 0.087is

$0.5 0 .0 / 4i.s 0 .0 / 2  j.8 O.O861.7 O.O8O1.5

$0.6 -0 .0110.3 -O.OOI0.1 0.020o.4 0.036o,6

$0.7 0.019o.s -0 .0 2 0 o.s -0.014o.3 -O.OOOo.o

$0.8 O-Ô Ô o 0.050!. 3 0.15029 0.1492.8

$0.9 0.006o.i 0 .0 1 10.3 -O.Oo60.7 -0.0340.6

O o 0.1022.6 -0 .1032.6 -0.18238 -0.1903.9

$0.11 0.024o.6 0 .010o.3 0.030o,6 0.041o.8

$0.12 -0.1624.2 -0.1664.3 -0.19542 -0.1964.2

Q 0.3092.2 0.3842.1 0 .0 2 8 1., 0.020o.9

$i.i -0.6733.2 -0.529!.9 0.0210.3 0.O43o.6

$ 1.2 1.3214.3 0.7952.4 0.3304a 0.3214.4

$1.3 o.5 i7 i,6 0.306o,9 0.2322.8 0.2172.8

$1,4 -0 .697K9 -0.7911., -0.036o.4 -0.012o,2

$1.5 0.586!.2 0.245o.6 0.115i,3 O.O6O0.8

Table 11 Estimation Characteristics

No. of 
Starting 
Values

No. of 
Local 

Maxima

Full-Sample 
Graph 

Looks Like
SP° Skeleton

15 2 Figure 8 0.05 limit cycle
3 1 Figure 8 0.10 limit point
1 1 Between Figures 8 & 11 0.25 limit point
5 2 Figure 11 0.38 limit point
15 6 Numerous recessions 0.14 limit point
11 7 No recessions <0.04 limit point

i
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“  ‘ 9 -̂C -35C ' 9 6 0  ' 3 7 0  ' 9 5 0  ' 3 9 0
a) FTP I Model

- Q c n

b) SSM1 Model
Figure 8 Full-sample recession probabilities of the FTP1 and SSM1 models.

\ / ~  forecast

One-step
forecast Actual

1 9 5 7' 9 9 0 ' 9 9  1 1 9 9 3
a) SSM1 model forecast

•o

Long-run forecast

One-step
forecast Actual

' 9 9 51992 1 9 9 51 9 9 0  1991 1 9 9 3
b) FTP1 model forecast 

Figure 9 Forecasting based on the SSM1 and FTP1 models

i
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0. 0 0. 10
Figure 10 Limit cycle trajectory (phase diagram) of the SSM1 forecast

20QC' 9 8 0 1 9 9 01 9 5 0 1 9 6 0 1 970
a) FTP2 model

1 9 4 0

o

o 2 0 0 01970 1 9 8 01 9 5 0 1 9 6 01 9 4 0
b) SSM2 model

Figure 11 Full-sample recession probabilities of the SSM2 and FTP2 models.
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4.5. C o n c lu s io n  

SSM models above have shown that self-switching Markov is a successful 

strategy for embedding nonlinear feedback. It can generate complex dynamics 

where a Markov switching model fails to.

The SSM models also provide empirical evidence in a variety of settings 

that endogenous information is significant in predicting regime switching.

Not only are the coefficients for the lagged endogenous variables significant, 

but likelihood ratio test results also show the endogenous information to be 

important in all models.

The goal of capturing the “natural” rhythm of a market economy is 

achieved when an SSM model is applied to the monthly changes in the U.S. un - 

employment rate. Many estimates exhibit stable limit cycles of diverse perio­

dicity in forecasts or simulations. These estimates show that an endogenous cy­

cle (limit cycle) model is consistent with the data.

The advantage of SSM models over TAR models that rely on discrete 

thresholds and delay factors is also evident from results reported in the Ap­

pendix. The SSM approach improves likelihoods significantly' in these models 

as well.

The skeleton of an SSM model behaves very much like a TAR model. It 

can have multiple paths of convergences, including a limit cycle path. The 

impulse-response function is thus path dependent. The persistence, short of a 

limit cycle, can still be much greater than in the linear case.

There are also many challenges facing an SSM model builder. The 

choice of the transition function affects the model behavior in simulation and 

forecasting. While the logistic mapping is intuitive and its starting param eter 

vector can be found consistently, it can easily lead to a globally unstable ou t­

come in simulation. The Semi-normal mapping, by contrast, is more globally
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stable, and yet no obvious method exists for finding a consistent initial pa­

ram eter vector.

Another challenge facing an SSM model builder is the tendency for the 

model to converge, based on the starting param eter values, to a large number 

of local maxima. Many of which seem spurious.

The performance of the model in terms of the mean post-sample predic­

tion error is also mixed. The SSM model is inferrer to FTP model in the U.S. un - 

employment rate series of Table 9, but superior to TAR model in the sunspots 

series of Table 13.

The finding that the endogenous switching parameters are statistically 

significant lends empirical support to endogenous business cycles theories, 

despite some of the difficulties encountered in estimating the models. The 

challenge of modeling a business cycle as a low frequency (five to ten years ) 

limit cycle remains for future research.

i
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5. Appendix; SSM Models on Benchmark Time Series

To evaluate the performance of SSM models, I contrasted them  with the TAR 

models reported in Tong (1990) using a series of benchmark tests. In particu­

lar, I contrasted them with Tong’s models based on the Canadian Lynx yearly 

trapping series and the sunspot numbers.

5.1. The Canadian Lynx Yearly Trapping Series  

Tong’s model (1990, eq. 7.7, pp. 387) is reproduced-52 in Table 12 under the 

heading “Tong”. A TAR model is replicated by imposing constraints in the 

transition equation. One of the two local maxima found is reported in the table 

under the heading “TAR”. (For reasons unknown, however, I was unable to 

replicate Tong’s coefficients exactly. Only the underlined digits are the same.)

The data is from Tong (1990, 470), and the same log transformation is 

used as Tong.

Two STAR-like-55 estimates (among 4 local maxima found) that improved 

the likelihood significantly compared to the TAR model are also reported in the 

table under the headings “STAR-Likel” and “STAR-Like2”. The first estimate

52 For an explanation of how to read the table, see footnote 18  on page 4 2 .
Additionally, an  entry  with “o “ around it means that it is fixed to the value dur - 

ing estimation. Furthermore,
An entry  with a  “Q” around it indicates that the entry is constrained, except for 

the sign, to be the same as a corresponding param eter entry, or a group of param eter en­
tries.

“FP(-c)” is the time in t-periods it takes for the series to reach the long run equi - 
librium  point, starting from the T-th (i.e., the most current) observation during forecast 
simulation. A value o f implies tha t it is a lim it cycle.

55 It is STAR-like in the sense that the transition is sm oother than a TAR model. 
However, since a STAR model has no filtering and no Markov-switching dynamics, SSM with 
constraints in the transition equation is only an approximation to it.
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displays limit cycle behavior when forecasting out 500 periods. The second es­

timate oscillates for a long time (approximately 200 periods) before it reaches 

its limit point. Another noteworthy feature of the two estimates is that al­

though the first estimate has a set of coefficients very close to Tong’s TAR 

model (within one standard error), the second has a much higher likelihood 

value.

Two estimates out of 5 local maxima found in a 2-state self-swithing 

model are reported in the table under the headings “SSM1” and “SSM2”. Simi­

lar to the STAR model estimates, the first estimate displays limit cycle when 

forecasting out 500 periods, and the second estimate will take a fairly long time 

(approximately 80 periods) to reach its limit point.

An attem pt to model SSM using the semi-normal mapping was not as 

successful as the logistic mapping in terms of the AIC. The results are reported 

in the table under the heading “SSM3”. It is a 2-state model. In terms of (3-9), 

I(S*,h)=Sf for all h. The low bootstrap likelihood indicates that it is not a robust 

model.

Since the  SSM2 model nests a TAR model as a constrained model, the 

likelihood ratio test (LRT) is a valid test. It yields a value of 11.17 (2*[0.3241- 

0.2719]*107), and is greater than the 5% x 2(31 of 7.81. The LRT between the

STAR-like model and the TAR model is 4.109 (=2*[0.2911-0.2719]) — greater than 

the 5% X 2 a) ° f  3.84. A LRT between an SSM model and a STAR-like model is in -

valid, since each has a different set of constraints. Thus one is not a nested 

model of the other. However, using the AIC, it appears tha t the best SSM model 

is superior to the best STAR-Like model in Table 12.
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Table 12 Models of the Lynx series

Tong TAR STAR-
Likel

STAR-
Like2

SSM1 SSM2 i SSM3

Ho 3.81 3.950 3.952 NS NS 3.2511 NS

Pi NS NS NS 4.109 4.454 NS | 4.473
Co 0.546 0.516. a 0.5182.o 1-1823.3 I.I453.5 a4922.i i 1-1543.6

$0.1 1.032 1.037.. l.032u. 1.336„ 1-34911. 1.133,3.1 1.347n.

$0.2 -0.173 -0,163. , -0.153i.o -O.8363.3 -0.7293.o -0.2451.91 -0.7743.3

$0.3 0.171 0J.69!.! 0.157i.i 0.4631.5 0.288i.o 0.0010.0 i 0.348i,3

$0.4 -0.431 -0.437, s -0-4242.8 -0.6453.2 -0.6243.2 -0 .2882.11 -0.6253.3

$0.5 0.332 03472 i 0.3412.i O.1210.6 0.2311.2 0.232i,7 | 0.192,.,

$0.6 -0.284 r0293i.g -0.293 i.s -O.III0.6 -0.1190.- -.0194i.6| -0 .1120.6

$0.7 0.210 O2092.i 0.2092.i 0.2542.0 0.2031.8 O.2 IO2.7! 0.2192.o
9o <3.116> <3.116e> <-3.116> -8.2023.o 9.5242.81 3.6313.3

Po.i 0395o.4 4-3443.11

Po.2 <-l> <-l> <1> 2.58623 “6. / 5 1 3.4 : -0.9552.9
Oo2 0.0259 0.0256a ? 0.0247u. 0.0288.9 0.0313 9.8 0.023712. ! 0.02859.5

Q 2.632 23593.8 17452.s 0.55749 0.5024.3 3.63 /  io, * 0.4954.6

$ 1.1 1.492 L514i5 1.57114. 1.12920. 1.117i9. 1.251,,.| I-I 2 O2 0 .

$1.2 -1.324 J..264e,6 -1.147S7 -0.2654.3 -O.23O3.9 -l.4337.9i -0.231 4 .0

9i <-3.116> <-3.116> <3.116> [8.2021 [-9.524] | -I.OOOq.s

Pi.i [-0.395] [-4 .344] j

Pi .2 <1> <1> <-l> [-2.586] [6.751] f 0.6911.4

°12 0.0505 0.050a c 0.0464.3 0.01583 0.0147.7 0.013S6! 0.01348O
s -dOS 0.0855.4 0.4002.7 <1> <i >! <1>
p°o 1 0.927 0J59 0.609 0.927! 0.475

PU 0 0.073 0.641 0.391 0.073] 0.365
AIC -0.3008 -0.3012 -0.3205 -0.2869 -0.34921 -0.3445
L L 0.2719 0.2815 0.2911 0.2930 0.3241! 0.3311
LR/P--v 34 4.109/0.0426 11.17/0.0108!

34  For both likelihood rations, the null is the TAR model.
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Table 12 continued
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Tong TAR STAR-
Likel

STAR-
Like2

SSM1 SSM2 SSM3

BootL 0.242 0.269 0.272 0.333 0.321 0.252
BtL V 0.109 0.075 0.162 0.099 0.113 0.195
SP° 0.58 0.61 0.47 0.58 0.79 0.56
-Cyc0 5.2 5.3 3.5 33 6.4 3.1
=Cyc 9.2 9.2 6 6.6 8.4 5.7
Est 1/2 2/4 1/4 3/5 1/5 1/5
FP(t) oo oo >200 oo >80 oo

5.2. The S u n sp o t N um bers  

Tong’s model using sunspot numbers (1990, eq. 7.15, 421) is reproduced-*5 in 

Table 13 under the heading “Tong”. A TAR model is replicated in the table u n ­

der the heading “TAR”, just as in the Lynx series. (This time, I was only unable 

to reproduce the identical coefficients for the first AR equation.)

The data is also from Tong (1990, 471), and is transformed by Tong’s 

(1990, 420) equation: Y,=2Kl+X,)1/2-l j, where X, is the annual mean of daily su n ­

spot observations.

Two STAR-like56 estimates (among 3 local maxima found) are also re ­

ported in the table under the headings “STAR-Likel” and “STAR-Like2”. The 

likelihood ratio between “STAR-Likel” and “TAR” is significant. The former 

also has a lower forecast error. An interesting feature of “STAR-Like2” is that 

it is in reality a TAR model, with a similar set of coefficients and the same lim­

iting behavior as those in “TAR”.

55 For an explanation of the symbols used in the table, see footnote 18 on page 42, 
and footnote 32 on page 66. Additionally,

*s die mean post-sample prediction error of the transformed data from 1980
to 1987.

56 See footnote 33 on page 82.

i
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One of 3 SSM estimates is reported in the table under the heading 

“SSM2”. The likelihood ratio between “SSM2” and “TAR” is significant. The SSM 

model also has the lowest forecast error reported in the table. One of the most 

striking features of “SSM2”, however, is the transition equation coefficient 

estimates ti0 and Po,8. The first came very close to Tong's choice of 11.93 for the 

threshold. The second came very close to -1, the value of the delay factor is set 

to implicitly. Tong used an auxiliary procedure (grid search) to find the 

threshold value. In “SSM2” it is estimated directly from the data, showing the 

advantage of the SSM model.
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Table 13 Models of the Sunspot Numbers
Tong TAR STAR-

L ik e l
STAR-
L ike2

SSM2

Ho 8.591 8.147 7.355 8.147 7.538

Hi 12.24 12.25 12.95 12.25 12.857

Co 1.89 i.7423.6 2.02145 l-74236 1.9434.6

$0.1 0.86 0870a. 0.856! 2. O-8/Oi!. 0.859j2.

$0.2 0.08 0.075n - 0.014m 0.075o.7 0.025o.3
$0.3 -0.32 -0.329,, -0.2652.7 -0.3293.2 -0.2763.o
$0.4 0.16 0.164, 7 0.2002.2 0.164i.7 0.1962.s

$0.5 -0.21 ^ .1892.i -0.2472 8 -0.1892i -0.2302.7

$0.6 -0.00 -0.024n , -0.018o2 -0.024O3 -0.035q.4

$0.7 0.19 Q.2122.3 0.2182.5 0.2122.3 0.2312.8

$0.8 -0.28 =0 ,2913.1 -0.3404.o -0.291s.! -0..3274,o

$ 0.9 0.20 0.1912.o 0.1621S 0.1912.0 0.1682.0

$0.10 0.10 0.106, , 0 .1442.3 O.IO61.5 0.1322.2

Ho <11.93> <11.93> <11.93fc> 11.1562.,

Po.8 <-l> <-l> <-l> -0.8492.8
a02 1.946 T99i8. 1.54614. 1.988ig. 1.591 a .

Q 4.53 4^32o a 4 .7 8 7 ,.! 4.532,.7 5.2808.4

$1.1 1.41 M II2 2 . 1.41021 1.41122. 1.4022o.

$1.2 -0.78 -0.781, n -0.779, 6 -0.78110. -0.8138.8

Til <-11.93> <-11.93> <-11.93> [-11.156]

Pi .8 <d> <d? <& [0.849]

<*12 6.302 6.27815. 6.04514. 6.278i5. 6.086i3.
5 <io-s 1.130.3 0.00030.1 <b
poo 1 0.73 1 0.88
AIC 4.112 4.065 4.119 4.055
L L -1 .9968 -1 .9697 -1 .9967 -1 .9606
LR/P-v-*7 14.63/0.0000 19.54/0.000C
BootL -2.01 -1.978 -1.991 -1.971
Std BtL 0.053 0.047 0.048 0.048

37  The null hypotheses for both likelihood ratios are the nested TAR model.
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Table 13: Continued

Tong TAR STAR-
Likel

STAR-
Like2

SSNI2

8̂.1 6.033 5.49 6.034 4.68

SP° 0.59 0.59 0.59 0.65
=Cyc° 6.9 6.4 6.9 7.7

=Cyc 11.7 10.7 11.7 11.7

Est 1/2 1/3 2/3 1/3
FP(t) oo >200 oo >100

i
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